簡易檢索 / 詳目顯示

研究生: 江孟勳
Jiang, Meng-Xun
論文名稱: 金屬/氧化鉿(HfO2)/氧化釩(VO2)/HfO2/Si MOS 結構之閘極漏電流分析
Analysis of Gate Leakage of Metal/HfO2/VO2/HfO2/Si Stacked MOS Structure
指導教授: 劉傳璽
Liu, Chuan-Hsi
阮弼群
Juan, Pi-Chun
口試委員: 劉傳璽
Liu, Chuan-Hsi
阮弼群
Juan, Pi-Chun
林成利
Lin, Cheng-Li
口試日期: 2022/06/10
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 64
中文關鍵詞: 二氧化釩HiPIMS漏電流機制介電常數
英文關鍵詞: VO2, HiPIMS, leakage mechanism, dielectric constant
DOI URL: http://doi.org/10.6345/NTNU202201407
論文種類: 學術論文
相關次數: 點閱:112下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技進步,半導體元件達到設計的極限,因此需要尋找新的材料。有金屬-絕緣體相變特性的 VO2 就是個很適合研究的材料。本研究使用Al/HfO2/VO2/HfO2/Si 堆疊的 MOS 結構來研究 VO2 特性,並比較不同製程參數所完成試片的差異。

    HfO2 是熱穩定性高的高介電常數材料。由於這些特性,即便 VO2 表現得像金屬,介電層仍有介電特性進行擬合,並能在相變時看到明顯的介電常數變化。本研究使用 HiPIMS 長成高品質的VO2 薄膜,以減少 VO2 薄膜的缺陷所造成的實驗誤差。本研究使用漏電流機制擬合獲得的參數(介電常數、陷阱能階、能障高度)來判斷其是否適合作為 MOS 結構之潛力材料。
    本研究從實驗結果得出以下結論與推測。第一點,MOS 特徵的減弱主要是因為 Al 的滲透。第二點,可能存在低阻值的類電流通路。第三點,介電常數隨量測溫度增加而減少並在高溫時反轉,主要是因為 VO2 的相變。第四點,可能在介面生成 SiO2。最後,最佳製程參數是 500°C 的退火溫度和40 nm 的 VO2厚度。

    關鍵字:二氧化釩、HiPIMS、漏電流機制、介電常數

    As technology advances, semiconductor components reach the limits of their design, so we need new materials. VO2, with the metal-insulator phase transition feature, is a very suitable material for research. In this study, the Al/HfO2/VO2/HfO2/Si stacked MOS structure is used to study the VO2characteristics, and wecompare the differences of the samples completed with different process parameters.

    HfO2 is a high dielectric constant material with high thermal stability.Because of these features, even though the VO2 behaves like metal, thedielectric layer still has a dielectric feature to fit, and obvious dielectricconstant change can be seen during the phase transition. In this study, HiPIMSis used to grow a highquality VO2 film to reduce experimental errors caused bythe defect of the VO2film. In this study, parameters (dielectric constant, trapenergy level, barrier height) obtained by the fitting of leakage mechanisms are used to judge its suitability as a potential material for a MOS structure.

    This study draws the following conclusions and speculations from theexperimental results. The weakening of MOS characteristics is mainly due to Alpenetration. There may be low-resistance paths. The dielectric constant decreases as the measurement temperature increases and reverses at high temperature, mainlydue to the phase transition of VO2. There may be SiO2 generated in the interface.The best process parameter is annealing temperature of 500°C and VO2 thickness of 40 nm.

    Keyword:VO2, HiPIMS, leakage mechanism, dielectric constant

    第一章 緒論 1 1.1 摩爾定律(Moore's law)的極限 1 1.2 解決方法 1 1.3 二氧化釩(VO2) 2 1.3.1 釩(V) 2 1.3.2 金屬-絕緣體相變(Metal-Insulator Transition, MIT) 3 1.3.3 VO2 與其他 MIT 材料的比較 4 1.3.4 相變條件的調整 4 1.3.5 其他釩氧化物 5 1.3.6 VO2 薄膜製備 5 1.4 二氧化鉿(HfO2) 6 1.4.1 鉿(Hf) 6 1.4.2 HfO2 薄膜製備 7 1.5 實驗目標 7 第二章 文獻回顧 8 2.1 金氧半場效電晶體(MOSFET) 8 2.1.1 MOSFET 的歷史 9 2.1.2 能帶圖(Energy-band diagram) 11 2.2 漏電流傳導機制 15 2.2.1 普爾-法蘭克發射 16 2.2.2 蕭基發射 17 2.3 介電常數 18 2.4 介電層材料的要求 20 第三章 實驗方法 21 3.1 製程及量測之儀器與用途 21 3.1.1 濺鍍(Sputtering) 21 3.1.2 快速熱退火(Rapid Thermal Annealing, RTA) 26 3.1.3 薄膜厚度量測 27 3.1.4 電流量測 27 3.2 製程 29 3.2.1 試片結構 29 3.2.2 基板前處理 30 3.2.3 HfO2 緩衝層製作 31 3.2.4 VO2 薄膜製作 31 3.2.5 熱退火 32 3.2.6 Al 閘極製作 32 3.3 量測方法 33 3.4 數據擬合(Fitting) 33 3.4.1 普爾-法蘭克發射 33 3.4.2 蕭基發射 34 3.4.3 介電常數 35 3.4.4 陷阱能階與能障高度 37 第四章 結果與討論 38 4.1 實驗數據 38 4.2 數據擬合與討論 45 4.3 研究結果 57 第五章 結論 59 第六章 未來方向 60 參考文獻 61

    [1] S. Lee, K. Hippalgaonkar, F. Yang, J. Hong, C. Ko, J. Suh, K. Liu, K.
    Wang, J. J. Urban, X. Zhang, C. Dames, S.A. Hartnoll, O. Delaire and J.
    Wu, “Anomalously low electronic thermal conductivity in metallic
    vanadium dioxide,” Science, Vol. 355, No. 6323, pp. 371-374, 2017.

    [2] Z. Shao, X. Cao, H. Luo and P. Jin, “Recent progress in the phase-
    transition mechanism and modulation of vanadium dioxide materials,” NPG
    Asia Materials, Vol. 10, pp. 581-605, 2018.

    [3] C.V. Sunil Kumar, F. Maury and N. Bahlawan, “Vanadium oxide as a key
    constituent in reconfigurable metamaterials,” Metamaterials and
    Metasurfaces, Intech Open, pp. 151-169, 2018.

    [4] B. Janjan, M. Miri, A. Zarifkar and M. Heidari, “Design and simulation
    of compact optical modulators and switches based on Si-VO2-Si horizontal
    slot waveguides,” Journal of Lightwave Technology, Vol. 35, Issue 14,
    pp. 3020-3028, 2017.

    [5] M. Tazawa, P. Jin, T. Miki, K. Yoshimura, K. Igrashi and S. Tanemura,
    “IR properties of SiO deposited on V1− xWxO2 thermochromic films by
    vacuum evaporation,” Thin Solid Films, Vol. 375, Issue 1-2, pp. 100-103,
    2000.

    [6] N. Yuan, J. Li and C. Lin, “Valence reduction process from sol–gel V2O5
    to VO2 thin films,” Applied Surface Science, Vol. 191, pp. 176-181, 2002.

    [7] D. Yin, N. Xu, J. Zhang and X. Zheng, “Vanadium dioxide films with good
    electrical switching property,” Journal of Physics D: Applied Physics,
    Vol. 29, pp. 1051-1057, 1996.

    [8] C.B. Greenberg, “Undoped and doped VO2 films grown from VO(OC3H7)3,”
    Thin Solid Films, Vol. 110, Issue 1, pp. 73-82, 1983.

    [9] W. Haidinger and D. Gross, “Anomalous hysteresis shape of thin VO2
    layers,” NPG Asia Materials, Vol. 12, Issue 2, pp. 433-438, 1972.

    [10] D.H. Kim and H.S. Kwok, “Pulsed laser deposition of VO2 thin films,”
    Applied Physics Letters, Vol. 65, pp. 3188-3190, 1994.

    [11] R.T. Rajendra Kumar, B. Karunagaran, D. Mangalaraj, S.K. Narayandass,
    P. Manoravi, M. Joseph, “Properties of pulsed laser deposited vanadium
    oxide thin film thermistor,” Materials Science in Semiconductor
    Processing, Vol. 6, Issue 5-6, pp. 375-377, 2003.

    [12] D. Ruzmetov, K.T. Zawilski, V. Narayanamurti, and S. Ramanathan,
    “Structure-functional property relationships in RF-sputtered vanadium
    dioxide thin films,” Journal of Applied Physics, Vol. 102, Issue 11,
    Article ID 113715, 2007.

    [13] J. Ma, G. Xu, L. Miao, M. Tazawa and S. Tanemura, “Thickness-dependent
    structural and optical properties of VO2 thin films,” Japanese Journal
    of Applied Physics, Vol. 50, Article ID 020215, 2011.

    [14] H.A. Wriedt, “The O-V (oxygen-vanadium) system,” Bulletin of Alloy
    Phase Diagrams, Vol. 10, No. 3, pp. 271-273, 1989.

    [15] G. He, M. Liu, L.Q. Zhu, M. Chang, Q. Fang and L.D. Zhang, “Effect of
    postdeposition annealing on the thermal stability and structural
    characteristics of sputtered HfO2 films on Si (1 0 0),” Surface Science,
    Vol. 576, Issue 1-3, pp. 67-75, 2005.

    [16]王文奕,“鋯掺入極薄氧化釔高介電係數閘極介電層之效應”,國立台灣師範大學
    ,碩士,民國101年6月。

    [17] F.C. Chiu, “A review on conduction mechanisms in dielectric films,”
    Advances in Materials Science and Engineering, Vol. 2014, Article ID
    578168, 2014.

    [18] Agilent Technologies Incorporation, “Agilent basics of measuring the
    dielectric properties of materials,” Application Note, 2013.

    [19] W.D. Sproul, D.J. Christie and D.C. Carter, “Control of reactive
    sputtering processes,” Thin Solid Films, Vol. 491, Issue 1-2, pp. 1-17,
    2005.

    [20] P.J. Kelly and R.D. Arnell, “Magnetron sputtering: a review of recent
    developments and applications,” Vacuum, Vol. 56, Issue 3, pp. 159-172,
    2000.

    [21] P.D. Davidse, “Theory and practice of RF sputtering,” Vacuum, Vol. 17,
    Issue 3, pp. 139-145, 1967.

    [22] K. Sarakinos, J. Alami and S. Konstantinidis, “High power pulsed
    magnetron sputtering: a review on scientific and engineering state of the
    art,” Surface & Coatings Technology, Vol. 204, pp. 1661-1684, 2010.

    [23]賴禹丞,“高功率脈衝磁控濺鍍二氧化鋯介電層於金氧半電容之性質研究”,國
    立台灣師範大學,碩士,民國104年7月。

    [24] J.B. Kana Kana, G. Vignaud, A. Gibaud and M. Maazaa, “Thermally driven
    sign switch of static dielectric constant of VO2 thin film,” Optical
    Materials, Vol. 50, pp. 165-169, 2016.

    [25] M. Toledano Luque, E. San Andrés, A. Del Prado, I. Mártil, M.L. Lucía,
    G. González Díaz, F.L. Martínez, W. Bohne, J. Röhrich and E. Strub,
    “High-pressure reactively sputtered HfO2: composition, morphology and
    optical properties,” Journal of Applied Physics, Vol. 102, Issue 4,
    Article ID 044106, 2007. 

    [26] B. Ku, S. Choi, Y. Song and C. Choi, “Fast thermal quenching on the
    ferroelectric Al:HfO2 thin film with record polarization density and flash
    memory application,” 2020 IEEE Symposium on VLSI Technology, 2020.

    [27] Z. Yang, C. Ko, V. Balakrishnan, G. Gopalakrishnan and S. Ramanathan,
    “Dielectric and carrier transport properties of vanadium dioxide thin films
    across the phase transition utilizing gated capacitor devices,”
    Physics Review B, Vol. 82, Article ID 205101, 2010.

    [28] E. Freeman, “Vanadium dioxide tunnel junctions and structural evolution
    of electrically driven insulator to metal transition,” The Pennsylvania
    State University, Thesis of Master of Science, December 2013.

    [29] R.G. Southwick, J. Reed, C. Buu, R. Butler, G. Bersuker and W.B. Knowlton,
    “Limitations of Poole–Frenkel conduction in bilayer HfO2/SiO2 MOS Devices,”
    IEEE Transactions on Device and Materials Reliability, Vol. 10, Issue 2,
    pp. 201-207, 2009.

    [30] G. Bersuker, D. Heh, C. Young, H. Park, P. Khanal, L. Larcher, A. Padovani,
    P. Lenahan, J. Ryan, B. H. Lee, H. Tseng and R. Jammy, “Breakdown in the
    metal/high-k gate stack: Identifying the “weak link” in the multilayer
    dielectric,” IEEE, No. 10500637, San Francisco, USA, December 2008.

    [31] C. Zhu, “Electronic states of high-k oxides in gate stack structures,”
    Arizona State University, Dissertation of doctor of philosophy, August 2012.

    下載圖示
    QR CODE