研究生: |
張瑜庭 Chang, Yu-Ting |
---|---|
論文名稱: |
室內環境動物群聚動態之初探- 以浸液標本庫為例 Preliminary study on the dynamics of animal community of indoor environment– Using the fluid-preserved collection storage as a model system |
指導教授: |
徐堉峰
Hsu, Yu-Feng 詹美鈴 Chan, Mei-Ling |
口試委員: |
徐堉峰
Hsu, Yu-Feng 詹美鈴 Chan, Mei-Ling 李佩珍 Lee, Pei-Jen 楊曼妙 Yang, Man-Miao |
口試日期: | 2021/07/02 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 室內環境 、物種組成 、生物多樣性 、群聚結構 、核心物種 |
英文關鍵詞: | indoor environment, species composition, core species, biodiversity, community structure |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202100956 |
論文種類: | 學術論文 |
相關次數: | 點閱:177 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類長時間待在室內環境中,與室內環境關係密不可分,而隨著人類的活動會在室內環境中創造出各種微環境,提供各類生物生活、取食、棲息環境,並完成世代交替,但在以往關於這些生物的研究並不多,且大多侷限在常見有害物種,對於室內生物整體性研究及生物與環境間的連結性研究甚少。
本研究以有人為控制的浸液標本蒐藏庫為主要研究樣區,相較於其他室內居家環境,相對影響因子較少,較容易掌控。從2018年08月至2019年12月,透過黏蟲屋取樣及掃塵取樣,進行每月進行一次調查,共記錄到六綱十七目二十八科二十八種 (含形態種) 34,575隻個體,其中含10種核心物種。依據NMDS及稀釋與預測曲線分析兩種取樣方式之差異,結果顯示兩種取樣之群聚結構呈顯著差異,且以黏蟲屋取樣之效用較高,能捕捉到之種類更多。在多樣性指數中,整體香農指數 (H’) 為1.57,均勻度 (J’) 為0.47,種豐富度 (Dmg) 為2.60,其中唯有種豐富度指數與環境因子間 (溫度、相對濕度及雨量) 有顯著相關性。在探討黏蟲屋擺放位置依據分層高度和與主要空調的距離,對於物種群聚結構及數量之影響,分別使用NMDS及雙因子變異數分析,結果顯示黏蟲屋之分層高度對物種個體數量及群聚結構有顯著影響及差異;而黏蟲屋距離主要空調出風口遠近,對於物種個體數量無顯著影響,但離空調距離越遠有個體數量越少的趨勢存在,且各距離間群聚結構相似性高;透過複迴歸模型分析核心物種類群數量與環境因子間之關聯性,結果顯示在多數核心物種類群數量變化上,環境因子是極為重要的影響因子。
本研究有助於初步瞭解室內物種多樣性,以及物種與環境間的關聯性,和增加室內物種生物學之認識,以評估其做為室內環境生物指標的可能性,藉此瞭解室內環境對人體健康或財產的潛在危害及影響,或提供防治之建議及未來研究之依據。
Human beings spend a long period of time in an indoor environment. There are various microenvironments in the indoor environment due to human activities, providing a live, food, and habitat for a variety of organisms. However, the studies on those organisms have been scanty, with information available only for few common harmful species. Up to date, very few studies have been focused on indoor organisms and the relationship between them and the environment.
In this study, a fluid-preserved collection storage was used as the main sampling area. Comparing with other indoor house environments, its environmental factors are simpler and easier to control. From August 2018 to December 2019, the survey was conducted once a month using sticky traps and floor sweeping. In total, 34,575 individuals, 28 species or morphospecies, 28 families belonging to 17 orders in 3 classes were collected. According to the analyses of NMDS and rarefaction and extrapolation curve, the results show that the community structure of these two methods are significantly different.
Sticky traps are more effective than floor sweeping to collect more species. The overall Shannon index (H') was 1.57, evenness (J') is 0.47, and Margalef's richness (Dmg) was 2.60. Only Margalef's richness index was significantly correlated with environmental factors. Moreover, the results of NMDS and two way ANOVA analyses show the number of individuals and community structure varied in different shelf strata significantly. In addition, the distance of the sticky traps to the main air conditioner vent had a potential impact on species number, and high similarity of community structure between different distances. Through the analysis of multiple regression model, the results show that environmental factors are extremely important factors that influencing the quantitative changes of the most core species community.
This study may help us to understand the diversity of indoor species, the basis for future research, and extending our knowledge on the biology of indoor species. It can also provide precaution advice and evaluate the possibility of indoor species to serve as an indoor environmental biological indicator for implying the potential hazards and problems that will affect human health or property in the indoor environment.
Aak, A., Hage, M., & Rukke, B. A. (2020). Long-tailed silverfish (Ctenolepisma longicaudata) control; bait choice based on primary and secondary poisoning. Insects, 11(3), 170. https://doi.org/10.3390/insects11030170
Aak, A., Rukke, B. A., Ottesen, P. S., Hage, M. (2019). Long-tailed silverfish (Ctenolepisma longicaudata) – biology and control. Norwegian Institute of Public Health Report, 1-43. Oslo, Norway: Norwegian Institute of Public Health.
Adenle, A. A. (2012). Failure to achieve 2010 biodiversity’s target in developing countries: how can conservation help? Biodiversity and Conservation, 21(10), 2435-2442. https://doi.org/10.1007/s10531-012-0325-z
Aldini, R. N. (2000). Morphological notes on the synanthropic psocid Psoquilla marginepunctata Hagen (first finding of the family Psoquillidae in Italy). Bollettino di Zoologia Agraria e di Bachicoltura, Ser. II, 32(2), 75-83.
Aoki, I. (2012). Ecological Communities. In I. Aoki (Ed.), Entropy Principle for the Development of Complex Biotic Systems (pp. 63-71). Oxford: Elsevier.
Barker, P. S. (1967). Bionomics of Blattisocius Keegani (Fox) (Acarina: Ascidae), a predator on eggs of pests of stored grains. Canadian Journal of Zoology, 45(6), 1093-1099.
Battigelli, J.P. (2011). Exploring the world beneath your feet: soil mesofauna as potential biological indicators of success in reclaimed soils. Tailings and Mine Waste Conference. https://dx.doi.org/10.14288/1.0107732
Bernstein, L., Bosch, P., Canziani, O., Chen, Z., Christ, R., & Riahi, K. (2008). IPCC, 2007: Climate Change 2007: Synthesis Report. Geneva: IPCC.
Bertone, M. A., Leong, M., Bayless, K. M., Malow, T. L., Dunn, R. R., & Trautwein, M. D. (2016). Arthropods of the great indoors: characterizing diversity inside urban and suburban homes. PeerJ, 4, e1582. https://doi.org/10.7717/peerj.1582
Bessot, J. C., & Pauli, G. (1986). Les acariens: pneumallergénes principaux de la poussière de maison [Mites: the principal respiratory allergens of house dust]. Revue des maladies respiratoires, 3(1), 19–23.
Binotti, R. S., Muniz, J. R., Paschoal, I. A., do Prado, A. P., & Oliveira, C. H. (2001). House dust mites in Brazil--an annotated bibliography. Memorias do Instituto Oswaldo Cruz, 96(8), 1177–1184. https://doi.org/10.1590/S0074-02762001000800027
Bousquet, Y. (1990). Beetles associated with stored products in Canada: an identification guide. Canada Department of Agriculture Publication. Ottawa, Ontario. 220.
Brenner, B. L., Markowitz, S., Rivera, M., Romero, H., Weeks, M., Sanchez, E., Deych, E., Garg, A., Godbold, J., Wolff, M. S., Landrigan, P. J., & Berkowitz, G. (2003). Integrated pest management in an urban community: a successful partnership for prevention. Environmental health perspectives, 111(13), 1649–1653. https://doi.org/10.1289/ehp.6069
Britto, E., Lopes, P., & Moraes, G. (2012). Blattisocius (Acari, Blattisociidae) species from Brazil, with description of a new species, redescription of Blattisocius keegani and a key for the separation of the world species of the genus. Zootaxa, 3479, 33-51.
Bui-Klimke, T. R., & Wu, F. (2015). Ochratoxin A and human health risk: a review of the evidence. Critical reviews in food science and nutrition, 55(13), 1860–1869. https://doi.org/10.1080/10408398.2012.724480
Cao, H., Liu, Z. (2020). Clinical significance of dust mite allergens. Molecular Biology Reports, 47, 6239–6246. https://doi.org/10.1007/s11033-020-05613-1
Chan, M. L., & Lee, K. S. (2016). A new record of Latridiidae (Coleoptera), Eufallia seminivea (Motschulsky), from Taiwan, with notes on its occurrence. Formonsan Entomology, 36, 84-93.
Chandler, D. S. (1983). Larvae of wrack Coleoptera in the families Corylophidae, Rhizophagidae, and Lathridiidae. Psyche, 90, 287-296.
Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K., & Ellison, A.M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84: 45-67. https://doi.org/10.1890/13-0133.1
Clarke, K. R., Gorley, R.N. (2001). Primer v5: user manual/tutorial. Primer-E Ltd: Plymouth.
Clarke, K.R. (1993). Nonparametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117–143.
Colloff, M. J. (2009). Identification and taxonomy, classification and phylogeny. In: Dust Mites. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2224-0_1
Cox, K. D., Black, M. J., Filip, N., Miller, M. R., Mohns, K., Mortimor, J., Freitas, T. R., Greiter Loerzer, R., Gerwing, T. G., Juanes, F., & Dudas, S. E. (2017). Community assessment techniques and the implications for rarefaction and extrapolation with Hill numbers. Ecology and evolution, 7(24), 11213–11226. https://doi.org/10.1002/ece3.3580
Coyle, J. R., Hurlbert, A. H., & White, E. P. (2013). Opposing mechanisms drive richness patterns of core and transient bird species. The American naturalist, 181(4), 83–90. https://doi.org/10.1086/669903
Cui Y. (2014). When mites attack: domestic mites are not just allergens. Parasites & vectors, 7, 411. https://doi.org/10.1186/1756-3305-7-411
Dhooria, M.S. (2016). Biological Control of Phytophagous Mites. In: Fundamentals of Applied Acarology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1594-6_20
Dodds, K. (2014). Effects of trap height on captures of arboreal insects in pine stands of northeastern United States of America. The Canadian Entomologist, 146(1), 80-89.
Dohoo, I., Ducrot, C., Fourichon, C., Donald, A., & Hurnik, D. (1997). An overview of techniques for dealing with large numbers of independent variables in epidemiologic studies. Preventive Veterinary Medicine, 29(3), 221–239. https://doi.org/10.1016/s0167-5877(96)01074-4
Dunn, R. R., Reese, A. T., & Eisenhauer, N. (2019). Biodiversity-ecosystem function relationships on bodies and in buildings. Nature ecology & evolution, 3(1), 7–9. https://doi.org/10.1038/s41559-018-0750-9
Eichholz, M. W., Zarri, E. C., & Sierzega, K. P. (2020). Quantifying corticolous arthropods using sticky traps. Journal of visualized experiments, (155). https://doi.org/10.3791/60320
Escalante, I. (2015). Predatory behaviour is plastic according to prey difficulty in naïve spiderlings. Journal of Insect Behavior, 28(6), 635-650. https://doi.org/10.1007/s10905-015-9530-4
Esteca, F., Pérez Madruga, Y., Britto, E., & Moraes, G. (2014). Does the ability of Blattisocius species to prey on mites and insects vary according to the relative length of the cheliceral digits? Acarologia, 54, 359-365.
Fardisi, M., Gondhalekar, A. D., Ashbrook, A. R., & Scharf, M. E. (2019). Rapid evolutionary responses to insecticide resistance management interventions by the German cockroach (Blattella germanica L.). Scientific reports, 9(1), 8292. https://doi.org/10.1038/s41598-019-44296-y
Feulner, G., & Roobas, B. (2015). Spiders of the United Arab Emirates : an introductory catalogue. Tribulus, 23, 4-98.
Frizzi, F., Bartalesi, V., & Santini, G. (2017). Combined effects of temperature and interspecific competition on the mortality of the invasive garden ant, Lasius neglectus: A laboratory study. Journal of thermal biology, 65, 76-81. https://doi.org/10.1016/j.jtherbio.2017.02.007
Gallego, J. R., Caicedo, O., Gamez, M., Hernandez, J., & Cabello, T. (2020). Selection of predatory mites for the biological control of potato tuber moth in stored potatoes. Insects, 11(3), 196. https://doi.org/10.3390/insects11030196
Gamito, S. (2010). Caution is needed when applying Margalef diversity index. Ecological Indicators, 10, 550-551.
Gautam, S. G., Opit, G. P., & Giles, K. L. (2010). Population growth and development of the psocid Liposcelis rufa (Psocoptera: Liposcelididae) at constant temperatures and relative humidities. Journal of economic entomology, 103(5), 1920-1928. https://doi.org/10.1603/ec10127
Gautam, S. G., Opit, G. P., & Shakya, K. (2015). Population Growth and Development of the Psocid Liposcelis fusciceps (Psocoptera: Liposcelididae) at Constant Temperatures and Relative Humidities. Environmental Entomology, 45(1), 237-244.
Gavara, J., Piedra-Buena, A., Hernandez-Suarez, E., Gamez, M., Cabello, T., & Gallego, J. R. (2021). Potential for the postharvest biological control of Phthorimaea operculella (Lepidoptera, Gelechiidae) by Blattisocius tarsalis (Mesostigmata, Blattisociidae). Agronomy, 11(2), 288. https://www.mdpi.com/2073-4395/11/2/288
Ghouri, A., & McFarlane, J. (1958). Occurrence of a macropterous form of Gryllodes sigillatus (Walker)(Orthoptera: Gryllidae) in laboratory culture. Canadian Journal of Zoology, 36, 837-838.
Gordon, H. D. (1938). Note on a rare beetle, Cartodere filum Aubé, eating fungus spores. Transactions of the British Mycological Society, 21, 193-197.
Hackman, K., Gong, P., Gong, P., & Venevsky, S. (2017). A rapid assessment of landscape biodiversity using diversity profiles of arthropod morphospecies. Landscape Ecology, 32(1), 209-223. https://doi.org/10.1007/s10980-016-0440-4
Hagstrum D. W. (2000). Using five sampling methods to measure insect distribution and abundance in bins storing wheat. Journal of stored products research, 36(3), 253-262. https://doi.org/10.1016/s0022-474x(99)00047-8
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2010). Multivariate Data Analysis: A Global Perspective (7th ed.). New Jersey: Pearson.
Haleem Khan, A. A., & Mohan Karuppayil, S. (2012). Fungal pollution of indoor environments and its management. Saudi journal of biological sciences, 19(4), 405–426. https://doi.org/10.1016/j.sjbs.2012.06.002
Hamilton, A. J. Species diversity or biodiversity? (2005). Journal of Environmental Management. 75, 89-92. https://doi.org/10.1016/j.jenvman.2004.11.012
Hance, T., van Baaren, J., Vernon, P., & Boivin, G. (2007). Impact of extreme temperatures on parasitoids in a climate change perspective. Annual review of entomology, 52, 107-126. https://doi.org/10.1146/annurev.ento.52.110405.091333
Heikal H. M. (2015). Studies on the occurrence, identification and control of house dust mites at rural houses of Shebin El-Kom Locality, Egypt. Pakistan journal of biological sciences, 18(4), 179-184. https://doi.org/10.3923/pjbs.2015.179.184
Hinton, H. E. (1941). The Lathridiidae of economic importance. Bulletin of Entomological Research, 32, 191-247.
Hooper, D. U., Adair, E. C., Cardinale, B. J., Byrnes, J. E., Hungate, B. A., Matulich, K. L., Gonzalez, A., Duffy, J. E., Gamfeldt, L., & O'Connor, M. I. (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486(7401), 105-108. https://doi.org/10.1038/nature11118
Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7(12), 1451-1456.
Huber, B. A. (2000). New World pholcid spiders (Araneae: Pholcidae): a revision at generic level. Bulletin of the American Museum of Natural History, 254, 1-347. https://doi.org/10.1206/0003-0090(2000)254<0001:NWPSAP>2.0.CO;2
Huber, B. A., & Charles, M. W. (2012). East African pholcid spiders: an overview, with descriptions of eight new species (Araneae, Pholcidae). European Journal of Taxonomy, 29, 1-44.
Inward, D., Wainhouse, D., & Peace, A. (2012). The effect of temperature on the development and life cycle regulation of the pine weevil Hylobius abietis and the potential impacts of climate change. Agricultural and Forest Entomology, 14, 348–357. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-9563.2012.00575.x
Isaacs, R., Tuell, J., Fiedler, A., Gardiner, M., Landis, D. 2009. Maximizing arthropod-mediated ecosystem services in agricultural landscapes: the role of native plants. Frontiers Ecology Environment, 7(4), 196-203.
Jaworski, T., & Hilszczański, J. (2013). The effect of temperature and humidity changes on insects development and their impact on forest ecosystems in the context of expected climate change. Forest Research Papers, 74 (4), 345-355. http://doi.org/10.2478/frp-2013-0033
Jenkins, M. F., White, E. P., & Hurlbert, A. H. (2018). The proportion of core species in a community varies with spatial scale and environmental heterogeneity. PeerJ, 6, e6019. https://doi.org/10.7717/peerj.6019
Kass, D., McKelvey, W., Carlton, E., Hernandez, M., Chew, G., Nagle, S., Garfinkel, R., Clarke, B., Tiven, J., Espino, C., & Evans, D. (2009). Effectiveness of an integrated pest management intervention in controlling cockroaches, mice, and allergens in New York City public housing. Environmental health perspectives, 117(8), 1219-1225. https://doi.org/10.1289/ehp.0800149
Kassim, N. F. A., Webb, C. E., & Russell, R. C. (2012). The importance of males: larval diet and adult sugar feeding influences reproduction in Culex molestus. Journal of the American Mosquito Control Association, 28(4), 312-316.
Klepeis, N. E., Nelson, W. C., Ott, W. R., Robinson, J. P., Tsang, A. M., Switzer, P., Behar, J. V., Hern, S. C., & Engelmann, W. H. (2001). The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology, 11(3), 231-52.
Knapp, M., van Houten, Y., van Baal, E., & Groot, T. (2018). Use of predatory mites in commercial biocontrol: current status and future prospects. Acarologia, 58(Suppl), 72-82.
Lapeva-Gjonova, A. & Rücker, W. H. (2011). Latridiidae and Endomychidae beetles (Coleoptera) from ant nests in Bulgaria. Latridiidae, 8, 5-8.
Leong, M., Bertone, M. A., Bayless, K. M., Dunn, R. R., & Trautwein, M. D. (2016). Exoskeletons and economics: indoor arthropod diversity increases in affluent neighbourhoods. Biology letters, 12(8), 20160322. https://doi.org/10.1098/rsbl.2016.0322
Leong, M., Bertone, M. A., Savage, A. M., Bayless, K. M., Dunn, R. R., & Trautwein, M. D. (2017). The habitats humans provide: Factors affecting the diversity and composition of arthropods in houses. Scientific reports, 7(1), 15347. https://doi.org/10.1038/s41598-017-15584-2
Li, J., Luo, Y., Huang, T., Shi, J., Chen, Y., & Heliövaara, K. (2009). Diversity and dominant species of arthropods in different forests of Aershan, Inner Mongolia. Forestry studies in China., 11(1), 1-8. https://doi.org/10.1007/s11632-009-0005-6
Li, L., Qian, J., Zhou, Y., & Cui, Y. (2018). Domestic mite-induced allergy: Causes, diagnosis, and future prospects. International journal of immunopathology and pharmacology, 32, 2058738418804095. https://doi.org/10.1177/2058738418804095
Lindsay, S. W., Wilson, A., Golding, N., Scott, T. W., & Takken, W. (2017). Improving the built environment in urban areas to control Aedes aegypti-borne diseases. Bulletin of the World Health Organization, 95(8), 607-608. https://doi.org/10.2471/BLT.16.189688
Lord, N. P., Hartley, C. S., Lawrence, J. F., McHugh, J. V., Whiting, M. F., & Miller, K. B. (2010). Phylogenetic analysis of the minute brown scavenger beetles (Coleoptera: Latridiidae), and recognition of a new beetle family, Akalyptoischiidae, fam. n. (Coleoptera: Cucujoidea). Systematic Entomology, 35, 753-763.
Magurran, A.E. (2004). Measuring Biological Diversity. Blackwells, Oxford, UK.
Majeed, W., Rana, N., de Azevedo Koch, E.B., & Nargis, S. (2020). Seasonality and climatic factors affect diversity and distribution of arthropods around wetlands. Pakistan Journal of Zoology, 52(6), 2135-2144. https://dx.doi.org/10.17582/journal.pjz/20200112020107
Majka, C. G., Langor, D., & Rücker, W. H. (2009). Latridiidae (Coleoptera) of Atlantic Canada: new records, keys to identification, new synonyms, distribution, and zoogeography. Canadian Entomologist, 141, 317-370.
Manu, M., Honciuc, V., Neagoe, A., Băncilă, R. I., Iordache, V., & Onete, M. (2019). Soil mite communities (Acari: Mesostigmata, Oribatida) as bioindicators for environmental conditions from polluted soils. Scientific reports, 9(1), 20250. https://doi.org/10.1038/s41598-019-56700-8
Martin L. J., Adams R. I., Bateman A., Bik H. M., Hawks J et al. (2015). Evolution of the indoor biome. Trends in Ecology & Evolution 30, 223-232.
Millerz, R. S., Passoa, S., Waltz, R.D., & Mastro, V. (1993). Insect removal from sticky traps using a citrus oil solvent. Entomological News, 104, 209-213.
Mweresa, C. K., Mukabana, W. R., van Loon, J. J. A., Dicke, M., & Takken, W. (2020). Use of semiochemicals for surveillance and control of hematophagous insects. Chemoecology, 30(6), 277-286.
Nayak, M. K., Collins, P. J., Throne, J. E., & Wang, J. J. (2014). Biology and management of psocids infesting stored products. Annual Review of Entomology, 59(1), 279-297.
Otte, D. (2006). Gryllodes sigillatus (Walker) is a valid species distinct from Gryllodes supplicans (Walker). Transactions of the American Entomological Society, 132, 223-227.
Robinson, W. (2005). Coleoptera. In Urban Insects and Arachnids: A Handbook of Urban Entomology (pp. 65-138). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511542718.006
Rodríguez-Rodríguez, S. E., Solís-Catalán, K. P., & Valdez-Mondragón, A. (2015). Diversity and seasonal abundance of anthropogenic spiders (Arachnida: Araneae) in different urban zones of the city of Chilpancingo, Guerrero, Mexico. Revista Mexicana de Biodiversidad, 86(4), 962-971. https://doi.org/10.1016/j.rmb.2015.09.002
Salarzehi, S., Hajizadeh, J., & Ueckermann, E. A. (2018). A new species of Cheyletus Latreille (Prostigmata: Cheyletidae) from Iran and a key to the Iranian species. Acarologia, 58(3), 640-646.
Sarisky, J. P., Hirschhorn, R. B., & Bauman, G. J. (2008). Integrated pest management. In: X. Bonnefoy, H. Kampen & K. Sweeney (Eds.), Public Health Significances of Urban Pests (pp. 543–562). Copenhagen, Denmark, World Health Organization Regional Office for Europe.
Schmeller, D.S., Niemelä, J., & Bridgewater, P. (2017). The intergovernmental science-policy platform on biodiversity and ecosystem services (IPBES): getting involved. Biodivers Conserv 26, 2271-2275. https://doi.org/10.1007/s10531-017-1361-5
Schoelitsz, B., Meerburg, B. G., & Takken, W. (2019). Influence of the public's perception, attitudes, and knowledge on the implementation of integrated pest management for household insect pests. Entomologia Experimentalis et Applicata, 167(1), 14-26. https://doi.org/10.1111/eea.12739
Silva, D., Salamanca, J., Kyryczenko-Roth, V., Alborn, H. T., & Rodriguez-Saona, C. (2018). Comparison of trap types, placement, and colors for monitoring Anthonomus musculus (Coleoptera: Curculionidae) adults in highbush blueberries. Journal of insect science (Online), 18(2), 19. https://doi.org/10.1093/jisesa/iey00
Snell Taylor, S. J., Evans, B. S., White, E. P. & Hurlbert, A. H. (2018). The prevalence and impact of transient species in ecological communities. Ecology, 99(8), 1825-1835. https://doi.org/10.1002/ecy.2398
Stiling, P. D. (2002). Community ecology. Ecology: Theories and Applications (7th ed.). New Jersey, Prentice-Hall.
Thind, B. B., & Ford, H. L. (2006). Laboratory studies on the use of two new arenas to evaluate the impact of the predatory mites Blattisocius tarsalis and Cheyletus eruditus on residual populations of the stored product mite Acarus siro. Experimental & applied acarology, 38(2-3), 167-180. https://doi.org/10.1007/s10493-005-5829-8
Thomas, H. Q., Zalom, F. G., & Nicola, N. L. (2011). Laboratory studies of Blattisocius keegani (Fox) (Acari: Ascidae) reared on eggs of navel orange worm: potential for biological control. Bulletin of entomological research, 101(5), 499-504. https://doi.org/10.1017/S0007485310000404
Tscharntke, T., Clough, Y., Wanger, T.C., Jackson, L., Motzke, I., Perfecto, I., Vandermeer, J., & Whitbread, A. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 151, 53-59. https://doi.org/10.1016/j.biocon.2012.01.068.
Umaña, M. N., Zhang, C., Cao, M., Lin, L. & Swenson, N. G. (2017). A core-transient framework for trait-based community ecology: an example from a tropical tree seedling community. Ecology Letters, 20, 619-628.
Valdez-Mondragón, A. (2006). Diversidad de Arañas (Arachnida: Araneae) relacionadas con Las Grutas de Juxtlahuaca, Guerrero, México. Entomología Mexicana, 5, 110-115.
Valdez-Mondragón, A. (2013). Morphological phylogenetic analysis of the spider genus Physocyclus (Araneae: Pholcidae). Journal of Arachnology, 41, 184-196. https://doi.org/10.1636/K12-33.1
Walter, D.E., & Proctor, H.C. (2013). Mites on plants. In: Walter, D.E., & Proctor, H.C. (Eds.), Mites: Ecology, Evolution & Behaviour (pp. 281-339). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7164-2_8
Wang, J. j., Ren, Y., Wei, X. Q., & Dou, W. (2009). Development, survival, and reproduction of the psocid Liposcelis paeta (Psocoptera: Liposcelididae) as a function of temperature. Journal of Economic Entomology, 102(4), 1705-1713.
Wilson, E. O. 1987. The little things that run the world (the importance and conservation of invertebrates). Conservation Biology, 1, 344-346.
Yoshinami, M., Kobayashi, N., Takino, M., & Sugita-Konishi, Y. (2018). Isolation of fungi from a fungivorous insect, the minute brown scavenger beetle (Latridiidae), and their potential ability for mycotoxin production. Journal of the Japanese Association of Mycotoxicology, 68(1), 7-11. https://doi.org/10.2520/myco.68-1-3
王巧萍、林登秋、顏聖紘、陳俊堯、謝森和、林思民、林宗岐、李亞夫、王俊能、趙國容、丁宗蘇、江智民、張世杰、黃美秀(譯)。2019。生態學(第四版)。台中市:滄海圖書資訊。(Begon, M., Howarth, R. W., & Townsend, C. R., 2014)
沈蓮、孫勁旅、陳軍。2010。家庭致敏蟎類概述。昆蟲知識。47(6),1264 -1269。
柯俊華、陳學新、樊晉江、李強、劉長明、樓曉明、馬雲、王淑芳、吳燕如、徐志宏、許再福、姚建。2004。浙江蜂類志。北京市:科學出版社。
徐堉峰(譯)。2002。昆蟲學概論。台北市:合記圖書出版社。(Gullan, P. J., & Cranston, P. S., 2000)。
張瑜庭、詹美鈴、徐堉峰,2018。半白長轉姬薪蟲 (Eufallia seminivea) 與環境關係之初探。第40屆台灣昆蟲年會論文宣讀。
詹美鈴、王也珍、曾皓佑、李婉萱、張瑜庭,2016。黑茶蛀蟲與環境黴菌關係之探討。第38屆台灣昆蟲年會論文宣讀。