研究生: |
蘇家慶 Su Chia Ching |
---|---|
論文名稱: |
十六環碳軸索套冠醚的電化學及螢光之應用 Electrochemical and Fluorescence Applications of Various C-pivot Membered Ring Lariat Crown Ethers |
指導教授: |
劉高家秀
Liu Gao, Jia-Xiu |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
中文關鍵詞: | 索套冠醚 、PVC薄膜 、離子選擇電極 、穩定常數 、消光 、史吞-佛爾常數 |
英文關鍵詞: | Lariat Crown Ether, PVC membrane, ion-selective electrode, Stability constant, Quenching, Stern-Volmer Constant |
論文種類: | 學術論文 |
相關次數: | 點閱:468 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文分為兩大部份:第一部份主要是研究十六環碳軸索套
冠醚在電化學上之應用;第二部份為十六環碳軸索套冠醚在螢光之研究與應用。
第一部份:我們合成的十六環碳軸索套冠狀醚的主要配位原子都是氧原子,所以能對氧原子配位的硬金屬離子較佳。引入側臂取代基主要目的是想要利用其側臂的輔助,經由三度空間錯合來增強冠狀醚對金屬離子的錯合能力。當側臂上具有不同之官能基時,則可利用官能基的不同來改變對不同金屬離子的選擇性。由以前實驗的結果知道,其中具有-CH2CH2CH=CH3側臂索套冠醚3d對銀離子、CH2CH2OCH3側臂索套冠醚3e對鉛(Ⅱ)離子和-CH2Py側臂索套冠醚3f對銅(Ⅱ)離子有好的選擇性。因此,決定以此三種索套冠醚,當作薄膜選擇性電極的材料,分別發展對銀(I)、鉛(Ⅱ)和銅(Ⅱ)的離子選擇性電極。由實驗結果了解到離子選擇性電極的選擇性和靈敏度,不僅決定於離子傳輸載體(Ionophore, 索套冠醚)本身,也與薄膜的組成和可塑劑的性質有關。以索套冠醚3d-PVC-NaTPB-NPOE和索套冠醚3e-PVC- NaTPB-NPOE的比例均為5:50:1:100製成的薄膜電極,得到55.4和28.9mV/decade接近於能士特的感應。而3f-PVC- NaTPB
-NPOE的比例為25:50:1:100製成的薄膜電極,得到42mV/decade稍微大於能士特感應。這個超能士特感應主要原因是由於3f索套冠醚與銅(II)離子同時存在1:1和2:1的錯合反應。3d索套冠醚銀離子選擇電極,線性範圍濃度為5´10-5到1´10-1M;3e索套冠醚鉛(II)離子選擇電極,線性範圍濃度為5´10-5到1´10-1 M;3f索套冠醚銅(II)離子選擇電極,線性範圍濃度為1´10-5到1´10-1M。所有薄膜離子選擇電極的偵測極限為1´10-6M,電極感應的時間均可少於30秒且有超過3個月以上的再現性和壽命;並利用電位滴定法得到索套冠醚在甲醇中與銀、鉛(II)和銅(II)離子之錯合穩定常數。使用電位滴定測出在甲醇溶液索套冠醚3d與銀離子、3e和鉛(II)離子的錯合穩定常數分別為logKs=3.11±0.0 3和logKs=3.23±0.11。同樣地,索套冠醚3f與銅(II)離子定出完全以1:1錯合的穩定常數logKs=5.75;而完全以2:1錯合的穩定常數logKs=8.99。此外也利用商業化的鈉和銀選擇性電極測量此系列九種十六環碳軸索套冠醚3a-3i的熱力學變數和錯合穩定常數(Ks)。我們由熱力學的數據與錯合穩定常數的實驗結果,了解到鈉和銀離子與十六環碳軸索套冠醚的錯合機制主要是由於焓控制而側臂變化反應在熵上。
第二部份合成帶有芳香性基團的新十六環碳軸索套冠醚,發展出銀和鈉的離子螢光偵測器。完成此系列9種新的帶有螢光基
團的十六環碳軸索套冠醚3j-3r,並對鈉離子和銀離子的螢光光譜進行錯合強度進行研究,期能找出對鈉離子有高感測度且可區分Na+與Ag+之螢光感測器。由實驗結果得知此系列索套冠醚對鈉離子螢光光譜有增強效應,以3m索套冠醚增強效應最強;而此系列索套冠醚對銀離子螢光光譜有消光行為,以3p索套冠醚消光效應最好;並從X-ray繞射結構解析了解索套冠醚與鈉離子錯合的真正結構,錯合時冠醚氧原子與含橋頭上氧原子參與配位而形成六配位的錯合。
Abstract
This dissertation includes two major parts. The first part mainly involves the research of the applications of 16 ring c-pivot lariat crown ethers regarding their elctrochemistry. The second part involves the research of 16 ring c-pivot lariat crown ether and their application in fluorescence.
First Part: The main donors of the 16 ring c-pivot lariat crown ethers synthesized in this research are oxygen atoms. Therefore, it is basically better to use hard metal ions that can coordinate with oxygen atoms. The
main purpose of introducing the sidearm donor is to use its sidearm, to promote the three-dimensional complexion to increase the complex ability of crown ether on metal ions. When the side arms have different functional groups, they can be used to modify the selectivity of different metal ions. From the results of previous experiments, that the sidearm lariat crown ethers 3d, 3e and 3f, composing of –CH2CH2CH=CH3,
CH2CH2OCH3 and –CH2Py, respectively, have good selectivity for silver, lead(II) and copper (II) ions, respectively. Thus, we use these three lariat crown ethers as ionophore and fabricate selective electrodes for silver (I), lead (II) and copper (II) ions, respectively. From experimental results, we understand that the selectivity and sensitivity of ion selective electrode depends not only on the Ionophore itself, but also relates to the composition of the membrane and the characteristics of the plasticizer. The membrane electrode made of lariat crown ethers 3d-PVC-NaTPB
-NOPE and 3e-PVC-NaTPB-NOPE at a ratio of 5:50:1:100 yielded a 55.4 and 28.9 mV/decade response, near Nerstain response. On the other hand, the membrane electrode made of lariat crown ether 3f-PVC-NaTPB
-NOPE at a ratio of 25:50: 1:100 yielded a 42 mV/decade response, slightly greater than Nerstain response. The main reason for the super-Nerstain slope is the complexes of 3f lariat crown ether and copper(II) ion co-exists at 1:1 and 2:1 ratio. The effective working concentrations of the 3d, 3e and 3f lariat crown ether selective electrodes for silver, lead(II) and copper(II) ions, are range from 5´10-5 to 1´10-1M, 5´10-5 to 1´10-1M and 1´10-5 to 1´10-1M, respectively. The detection limit for all membrane ion selective electrodes is 1´10-6M. All electrodes have response time of less than 30 seconds, and their reprodibilies and life time are more than three months. Potentiometric method was used to measure the complex stability constants of these lariat crown ethers with silver, lead(II) and copper(II) in methanol. For 3d lariat crown ethers with silver and 3e lariat crown ethers with lead(II), the stability constants Ks for the 1:1 is calculated as logKs = 3.11 ± 0.03 and logKs = 3.23 ± 0.11, respectively. Similarly, for the 3f lariat crown ether with copper(II) ion, the stability constants Ks for 1:2 complex is calculated as logKs=8.99, and logKs=5.75 for the 1:1 in methanol at 25℃. In addition, commercialized sodium and silver selective electrodes were used to measure the thermodynamic parameters and complex stability constant of this series of nine 16 ring c-pivot lariat crown ethers 3a-3i. Which is very important for understanding of how the metal ions complex with metal ions. From thermodynamic data we know that the complexation of sodium and silver ions are mainly controlled by their enthalpies. While their entropies are controlled by their sidearms.
Second Part: Novel new 16 c-pivot lariat crown ethers (3j-3r) containing fluorescence group were synthesized and developed as fluorescent sensors for silver and sodium ions. From the experimental results it is found that this series of lariat crown ethers enhance on the fluorescence spectra upon the addition of sodium ions. Among the series, lariat crown
3m ether has the strongest effect. On the other hand, the emission intensity reveled for this series of lariat crown ethers are quenched of silver ions. Among the series, Ag+ showed the greatest quenching effects in the excited 3p . Single crystal X-ray diffraction results reveal the oxygen atoms of the crown ether, and the oxygen atom of the bridge head carbon, participate in the coordination of sodium ion and form a six-coordination complex.
1-4參考文獻
1.F. Vögtle, E. Weber in S. Pata, Z. Rapport〝Crown Ether and Analogs〞, John Wiley and Sons, New York, 1989, Chapter 4.
2.C. J. M. Frank, V. Willem, N. R. David, Chem. Rev., 1994, 92,
279.
3.M. T. Lai, J. S. Shih, Analyst, 1986, 111, 891.
4.P. D. Beer; O. Kocian, R. J. Mortimer, C. Ridgway, J. Chem. Soc. Dalton Trans., 1993, 2629.
5.I. Turyan, D. Mandler, Anal Chem., 1993, 65, 2089.
6.A. K. Jain, V. K. Gupta, L. P. Singh, U. Khurana, Analyst, 1997,
122, 583.
7.E. Bakker, P. Bühlmann, E. Pretsch, Chem. Rev., 1997, 97, 3083.
8.P. Bühlmann, E. Pretsch, E. Bakker, Chem. Rev., 1998, 98, 1593.
9.P. D. Beer, S. W. Dent, Chem. Commum., 1998, 825.
10.V. Král, J. L. Sessler, T. V. Shishkanova, P. A. Gale, R. Volf, J. Am. Chem. Soc., 1999, 121, 8771.
11.H. F. Ji, G. M. Brown, R. Dabestani, Chem. Commum, 1999, 609.
12.Y. Liu, H. Y. Zhang, L. X. Chen, X. W. He, T. Wada, Y. Inoue, J.
Org. Chem., 2000, 65, 2870.
13.J. Bourson, J. Pouget, B. Valeur, J. Phys. Chem., 1993, 97, 4552.
14.I. Kása, B. Ágai, M. Kubinyi, A. Grofcsik, J. Mol. Struct., 1997,
408/409, 547.
15.H. F. Ji, R. Dabestani, G. M. Brown, R. L. Hettich, Photochem.
Photobiol., 1999, 69, ,513.
16.H. F. Ji, R. Dabestani, G. M. Brown, R. A. Sachleben, Chem.
Commum, 2000, 833.
17.M. Montalti, L. Prodi, N. Zaccheroni, J. Fluorescence, 2000,
10, 71.
18.C. Erk, A. Göcmen, Talanta, 2000, 53, 137.
19.H. Warmke, W. Wiczk, T. Ossowski, Talanta, 2000, 52, 449.
20.T. Hayashita, S. Taniguchi, Y. Tanamura, T. Uchida, J. Chem.
Soc., Perkin Trans. 2, 2000, 1003.
21.S. Encinas, K. L. Bushell, S. M. Couchman, J. C. Jeffery, M. D.
Ward, L. Flamigni, F. Barigelletti, J. Chem. Soc., Dalton Trans.,
2000, 1783.
22.E. Webber〝Crown Ethers and Analogs〞 S. Patai, Z. Rappoport,
Ed. John Willey & Sons., New York, 1989, Chapter 5.
23.R. A. Schlegel, E. Schlegel, D. M. Dishing, G. W. Gokel, J.
Chem. Soc. Chem. Commum. 1982, 242.
24.W. A. Charewicz, G. S. Heo, R. A. Bartsch, Anal. Chem., 1982,
54, 2094.
25.T. Takahashi, A. Uchiyama, K. Yamada, B. C. Lynn, G. W.
Gokel, Tetrahedron Lett., 1992, 33, 3825.
26.H. Tsukabe, Talanta, 1993, 40, 1313.
27.H. Tsukube, J. Uenishi, H. Higaki, K. Kikawa, T. Tanaka, S. Wakabayashi, S. Oae, J. Org. Chem., 1993, 58, 4389.
28.H. Tskube, K. Hori, T. Inoue, Tetrahedron Lett., 1993, 34, 6749.
29.A. Ohki, J. P. Lu, R. A. Bartsch, Anal. Chem., 1994, 66, 651.
30. A. Ohki, J. P. Lu, X. Huang, R. A. Bartsch, Anal. Chem., 1994, 66, 4332.
31.K. Mastsumoto, M. Hashimoto, M. Toda, H. Tsukube, J. Chem.
Soc. Perkin Trans. 1, 1995, 2497.
32.X. X. Zhang, A. V. Bordunov, J. S. Bradshaw, N. K. Dalley, X.
Kou, R. M. Izatt, J. Am. Chem. Soc., 1995, 117, 11507.
33.L. Kao Liu, C. S, Lin, D. S. Young, W. J. Shgu, C. H. Ueng, J. Chem. Soc. Chem. Commum., 1996, 1255.
34.R. M. Izatt, R. E. Terry, L. D. Hansen, A. G. Avondet, J. S. Bradshaw, N. K. Dalley, T. E. Jensen, J. J. Christensen, Inorg.
Chim. Acta, 1978, 30, 1.
35.G. Wu, W. Jiang, J. D. Lamb, J. S. Bradshaw, R. M. Izatt, J. Am. Chem. Soc., 1991, 113, 6538.
36.V. Van, W. Verboom, D. N. Reinhoudt, Chem. Rev., 1994, 94, 279.
37.T. Nabeshima, N. Tsukada, K. Nishijima, H. Ohshiro, Y. Yano, J. Org. Chem., 1996, 61, 4342.
38.R. A. W. Jonstone, I. A. S. Lewis, M. Rose, J. Chem. Soc. Chem. Commun., 1983, 1268.
39.K. Hiratenti, T. Takahashi, H. Sugihara, K. Kasuga, K. Fujiwara, T. Hayashita, R. A. Bartsch, Anal Chem., 1997, 69, 3002.
40.O. A. Raevsky, V. P. Solov¢ev, A. F. Solotonov, H. J. Scheider, V.
Rüdiger, J. Org. Chem., 1996, 61, 8113.
41.洪煥毅, 國立台灣師範大學化學研究所論文, 1996.
2-5參考文獻
1.M. Creamer, Z. Bio, 1906, 47, 562.
2.M. S. Frant, Analyst, 1994, 119, 2293.
3.A. Craggs, G. J. Moosy, J. D. R. Thomas, J. Chem. Edu., 1974,
51, 541.
4.A. Ohki, J. P. Lu, R. A. Bartsch, Anal. Chem., 1994, 66, 651.
5.A. Ohki, J. P. Lu, R. A. Bartsch, Anal. Chem., 1994, 66, 4432.
6.S. Daunert, L. G. Bachas, Anal. Chem., 1990, 62, 1428.
7.R. S. Hutchins, P. Molina, M. Alajarin, A. Vidal, L. G. Bachas,
Anal. Chem., 1994, 66, 3188.
8.A. K. Jain, V. K. Gupta, L. P. Singh, U. Khurana, Analyst, 1997, 122, 583.
9.Z. Xia, I. H. A. Badr; S. L. Plummer, L. Cullen, L. G. Bachas; Anal. Sci., 1998, 14, 169.
10.T. Ito, Anal. Sci., 1998, 14, 89.
11.Z. Q. Li, Z. Y. Wu, R. Yuan, M. Ying, G. L. Shen, R. Q. Yu,
Electrochim. Acta, 1999, 44, 2543.
12.A. Rhollahi, M. Shamsipur, Anal. Chem., 1999, 71, 1350.
13.I. H. A. Badr, M. Diaz, M. F. Hawthorne, L. G. Bachas, Anal.
Chem., 1999, 71, 1371.
14.G. W. Gokel, Chem. Soc. Rev., 1992, 21, 39 and references therein.
15.E. Weber in S. Pata, Z. 〝Crown Ether and Analogs〞, John
Wiley and Sons, New York, 1989 pp.305-358.
16.K. Mastumoto, M. Hashuimoto, M. Toda, H. Tsukube, J. Chem.
Soc. Perkin Trans., 1995, 1, 2497.
17.S. Kumar, M. S. Hunal, N. Kaur, R. Singh, H. Singh. , J. Org.
Chem. , 1996, 61, 7819.
18.D. Siswanta, K. Nagasuka, H. Yamada, K. Kumakura, H.
Hisamoto, Y. Shichhi, K. Toshima, K. Suzuki, Anal. Chem., 1996, 68, 4166.
19.N. Tavakkoli, Z. Khojasteh, H. Sharghi, M. Shamsipur, Anal.
Chim. Acta, 1998, 360, 203.
20.D. Zielinska, H. Raddecka, J. Raddecki, Anal. Sci., 1998, 14 , 151.
21.A. Abbaspour, F. Tavakol, Anal. Chim. Acta, 1999, 378, 145.
22.L. Kao Liu, C. S. Lin, D. S. Young, W. J. Shyu and C. H. Ueng,
J. Chem. Soc. Chem. Commun., 1996, 1225 .
23.D. S. Young, National Tawain Normal University, Ph.D.
thesis,1998.
24.P. Bühlmann, E. Pretsch, E. Bakker, Chem. Rev., 1998, 98, 1593.
25.S. Kamata, K. Yamasaki, M Higo, A. Bhale, Y. Fukunaga,
Analyst, 1988, 113, 45.
26.Z. Brzozka, Chem. Anal. (Warsaw), 1990, 35, 415.
27.K. A. Jain, V. K.Gupta, B. B. Sahoo, L. P. Singh, Anal. Proc.
, 1995, 32, 99.
28.W. P. R. V. Stauthamer, J. F. J. Engberson, W. Verboom,
D. R. Reinhoudt, Sens. Actuators B, 1994, 17 , 197.
29.H. K. Frensdorff, J. Am. Chem. Soc., 1971, 10, 600.
30.G. Jürgen, S . Hermann, S. Jadwiga, Inorg. Chem., 1971, 12,
3326.
31.N. V. Truong, A. R. Norris, H. S. Shin; E. Buncel, R. A. B. Bannard, J. G. Purdon, Inorg. Chim. Acta, 1991, 184, 59.
32.H. J. Buschman, Inorg. Chim. Acta, 1992, 195, 51.
33.T. S., K. Sakai, T. Tsubomura, Supramolecular Chem., 1996, 7, 157.
34.C. C. Su, M. C. Chang, L. Kao Liu, Anal. Chem. Acta, 2001, 432, 261.
35.W. Simon, Anal. Lett., 1974, 7, 9.
36.J. H. Boles, R. P. Buck, Anal. Chem., 1973, 45, 2057.
37.J. Koryta, Anal. Chim. Acta, 1973, 61, 329.
38.H. Tsukube, K. Yamashita, T. Iwachido, M. Zenki, Tetrahedron
Lett. , 1988, 569.
39. H. Tsukube, K. Yamashita, T. Iwachids, M. Zenki, J. Org. Chem. 1991, 56, 268.
40. E. Kimura, M. Shionoga, M. Okamoto, H. Nada, J. Am. Chem. Soc., 1988, 110, 3679.
41.X. H. Bu, D. L An, X. C. Cao, R. H. Zhang, T. Clifford, E. J. Kimura; J. Chem. Soc. Dalton Trans. 1998, 2247.
42.C. -S. Lin, L. Kao Liu, C. -H. Ueng, Acta cryst. C, 1997, C53,
574.
43.V. Peyre, S. Baillet, P. Letellier, Anal. Chem., 2000, 72, 2377.
44.V. V. Egorov, N. D. Borisenko, E. M. Rakhmank¢ko, Anal. Chem., 1998, 53, 855 (P. 750 English translation)
45. A. Ceresa, E. Pretsch, E. Bakker, Anal. Chem., 2000, 72, 2050.
46.Y. Umezawa, K. Umezawa, H. Sato, Pure&Appl. Chem., 1995, 67, 507.
47.E. Bakker, Electroanalysis, 1995, 9, 7.
48.C. C. Su, C. H. Ueng, L. Kao Liu, J. C. C. S., 2001, 48, in press.
3-5參考文獻
1.C. J. Pedersen, Angew. Chem. Int. Ed. Engel., 1988, 28, 1021.
2.J. J. Christensen, D. J. Eatough, R. M. Izatt, Chem. Rev., 1974, 74,
351.
3.R. M. Izatt, K. Pawlak, J. S. Bradshaw, R. L. Bruening, Chem.
Rev., 1991, 91, 1721.
4.R. M. Izatt, J. S. Bradshaw, K. Pawlak, R. L. Bruening, B. J. Tarbet, Chem. Rev., 1992, 92, 1261.
5.R. M. Izatt, K. Pawlak, J. S. Bradshaw, R. L. Bruening, Chem. Rev., 1995, 95, 2529.
6.R. M. Izatt, J. H. Rytting, D. P. Nelson, B. J. Haymore, J. J. Christensen, Science, 1968, 164, 443.
7.Y. Kikuchi, Y. Sakamoto, Anal Chim. Acta, 2000, 432, 325.
8. H. J. Buschmann, E. Cleve, E. Schollmeyer, J. Coord. Chem., 1996, 39, 293.
9.M. R. Ganjali, A. Rouhollahi, A. R. Mardan, M. Shamsipur, J. Chem. Soc., Faraday Trans., 1998, 14, 1959.
10.R. M. Izatt, J. S. Bradshaw, S. A. Nielson, J. D. Lamb, J. J. Christensen, Chem. Rev., 1985, 85, 271.
11.K. A. Arnold, L. Echegoyen, G. W. Gokel, J. Am. Chem. Soc.,
1987, 109,3713.
12.H. J. Buschmann, Inorg. Chim. Acta, 1992, 195, 51.
13.A. F. D. de Namor, J. C. Y. Ng, M. A. L. Tanco, M. Salomon, J.
Phys. Chem., 1996, 100, 14485.
14.Y. Liu, B. H. Han, Y. M. Li, R. T. Chen, M. Ouchi, Y. Inoue, J.
Phys. Chem., 1996, 100, 17631.
15.K. Naemura, K. Nishioka, K. Ogasahara, Y. Nishikawa, K. Hirose, Y. Tobe, Tetrahedron: Asymmetry, 1998, 9, 563.
16.Y. Nakatsuji, T. Nakamura, M. Yonetani, H. Yuya, M. Okahara, J.
Am. Chem. Soc., 1988, 110, 531.
17.H. Tsukube, K. Takagi, T. Higashiyama, N. Hayama, J. Chem.
Soc., Perkin Trans. 1, 1986, 1033.
18.J. S. Bradshaw, R. M. Itzatt, Acc. Chem. Res., 1997, 30, 338.
19.A. Roigh, O. V. Yescheulova, Y. V. Fedorov, O. A. Fedorova, S. P. Gromov, H. Schnider, J. Org. Lett., 1999, 1, 833.
20.L. Echegoyen, G. W. Gokel, M. S. Kim, E. M. Eyring, S. Petrucci, J. Phys. Chem., 1987, 109, 3713.
21.(a)R. B. Davidson, R. M. Izatt, J. J. Christensen, R. A. Schultz,
D. M. Dishong, G. W. Gokel, J. Org. Chem., 1984, 49, 5080.
(b)K. E. Matthes, D. Parker, H. J. Buschmann, G. Fergusion,
Tetrahedron Lett., 1987, 28, 5573.
22.Y. Liu, L. Zhang, Y. Li; Y. Chen, S. Huang, J. Meng, Y. Inoue, M. Ouchi, Thermochim. Acta, 1995, 253, 93.
23.Y. Liu, B. H. Han, Y. Inoue, M. Ouchi, J. Org. Chem., 1998, 63,
2144.
24.Y. Liu, B. H. Han, B. Li; Y. M. Zhang, P. Zhao, Y. T. Chen, T. Wada, Y. Inoue, J. Org. Chem., 1998, 63, 1444.
25.M. Rekharsky, Y. Inoue, J. Am. Chem. Soc., 2000, 122, 4418.
26.Y. Liu, H. Y. Zhang, X. P. Bai, T. Wada, Y. Inoue, J. Org. Chem.,
2000, 65, 7105
27.S. M. Trzaska, E. J. Toone, A. L. Crumbliss; Inorg. Chem., 2000, 39, 1071.
28.Y. Liu, B. H. Han, Y. T. Chen, Coord. Chem. Rev., 2000,
200-202, 53.
29.H. K. Frensdorff, J. Am. Chem. Soc., 1971, 93, 600.
30.F. A. Cotton, G. Wilkinson, 〝Advanced Inorganic Chemistry〞,
1988.
31.C. C. Su, M. C. Chang, L. Kao Liu, Anal. Chim. Acta, 2001, 432,
261.
32.K. A. Arnold, L. Echegoyen, G. W. Gokel, J. Am. Chem. Soc. 1987, 109, 3713.
33.T. W. Hambley, L. F. Lindoy, J. R. Reimers, P. Turner, G. Wei,
A. N. Widmer-Copper, J. Chem. Soc., Dalton Trans., 2001, 614.
4-5參考文獻
1. D. A. Skoog, J. J.Leary, Principle of Instrumental Analysis, 1996, ppl74-193.
2.A. P. de Silva, H. Q. N. Gunaratne, T. Gunmlaugsson, A. J. M.
Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev., 1997, 97, 1515.
3.P. Jacques; X. J. Allonas; Photochem. Photobiol. A Chem., 1994,
78, 1.
4.R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire, K. R. A. S. Sandanayake, Chem. Soc. Rev., 1992, 21, 187.
5.R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire, C. P. McCoy, K. R. A. S. Sandanayake, Top. Curr. Chem., 1993, 168, 223.
6.F. Diederich, Cyclophanes, Royal Society of Chemistry: Cambridge, 1991, p113.
7.J. Kawakami, Y. Komai, S. Ito; Chem. Lett., 1996, 617.
8.M. P. Teulade-Fichou, J. P. Vigneron, J. M. Lehn, J. Chem. Soc., Perkin Trans. 2, 1996, 2169.
9.C. Erk, A. Göcmen, Talanta, 2000, 53, 137.
10.(a)D. Philip, J. F. Stoddart, Angew. Chem., Int. Ed. Engl., 1996, 35, 1154; (b) J. M Lehn, Supramolecular Chemistry, Scope and
perspectives, VCH:Weinheim, Germany, 1995; Chapter 9. (c) D. S. Lawrene, T. Jiang, M. Levett, Chem. Rev., 1995, 95, 2229. (d )E. C. Constable, Chem. Commum., 1997,1074. (e) H. Sleiman, P. N. W. Baxter, J. M. Lehn, K. Airola, K. Rissanen, Inorg. Chem., 1997, 36, 4743. (f) S. Palacin; D. N. Chin, E. E. Simanek, J. C. McDonald, G. M. Whitesides, M. T. McBride, G. T. R. J. Palmore, J. Am. Chem. Soc., 1997, 119, 11807. (g) M. Fujita, D. Orguro, M. Miyazawa, H. Oka, K. Yamaguchi, Nature, 1995, 378, 469.
11.H. G. Löhr, F.Vögtle, Acc. Chem. Res., 1985, 18, 65.
12.A. P. de Silva, S. A. de Siliva, J. Chem. Soc. Chem. Commum., 1986, 1709.
13.I. Aoki, H. Kawabtata, K. Nakashima, S. Shinkai, J. Chem. Soc.
Chem. Commum., 1991,1771.
14.R. A. Bissell, A. P. Silva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire, K. R. A. S. Sandanayake, Chem. Soc Rev., 1992, 21, 187.
15.S. Alidihodzic, M. Zinc, B. Klaic, Tetrahedron Lett., 1993, 34, 8345.
16.L. Fabrizzi, A. Poggi, Chem. Soc. Rev., 1995, 24, 197.
17.A. P. de Silva, H. Q. N. Gunaratne, Gunnlaugsson, Pure & Appl. Chem., 1996, 48, 1443.
18.G. E. Collin, L. S. Choi, Chem. Commum., 1997,1135.
19.J. H. R Tucker, H. B. Laurent, P. Marsau, S. W. Riley, Chem.
Commum. 1997, 1165.
20.K. Kubo, E. Yamamoto, T. Sakurai, Heterocycles, 1997, 45, 1457.
21.H. Shizulka, K. Takada, T. Morita, J. Phys. Chem., 1980, 54,994.
22.F. Vögtle, E. Webber, Host-Guest Complex ChemistryⅠ
Springer-Verlag, Berlin, 1981.
23.G. W. Gokel, Chem. Soc. Rev., 1992, 21, 39 and references therein.
24.S. F. Forgues, M. T. Le Bris, J. P. Guetté, B. Valeur, J. Chem. Soc., Chem. Commum, 1988, 384.
25.J. Bourson, J. Pouget, B. Valeur; J. Phys. Chem, 1993, 97, 4552.
26.L. Fabbrizzi, A. Poggi, Chem. Soc. Rev., 1995, 197.
27.A. Göcmem, C. Erk, J. Inclus. Phenomena & Mol. Recog. in Chem., 1996, 26, 67
28.G. E. Collins, L. S. Choi, Chem. Commum., 1997, 1135.
29.N. K. Petrov, W. Kühnle, T. Fiebig, H. Staerk, J. Phys. Chem. A,
1997, 101, 7043.
30.G. R. Deviprasad, B. Keshavan, F. D’Souza, J. Chem. Soc., Perkin Trans. 1, 1998, 3133.
31.K. Kubo, R. Ishige, J. Kubo, T. Sakurai, Heterocycles, 1998, 48, 347.
32.K. Kubo, R. Ishige, T. Sakurai, Talanta, 1999, 48, 181.
33. K. Kubo, R. Ishige, T. Sakurai, Talanta, 1999, 49, 339.
34.A. Tahri, E. Cielen, K. J. V. Aken, G. J. Hoornaert, F. C. De
Schryver, N. Boens, J. Chem. Soc., Perkin Trans. 2, 1999,
1739.
35. M. A. Bernardo, F. Pina, B. Escuder, E. Garcīa-Espaňa, M. L. Godino-Salido, J. Latorre, S. V. Luis, J. A. Ramīrez, C. Soriano, J. Chem. Soc., Dalton Trans., 1999, 915.
36.H. F. Ji, R. Dabestani, G. M. Brown, R. L. Hettich, Photo. Photobio., 1999, 69, 513.
37.S. Encinas, K. L. Bushell, S. M. Couchman, J. C. Jeffery, M.
D. Ward, L. Flamigni, F. Barigelletti, J. Chem. Soc., Dalton Trans., 2000, 1783.
38.H. Warmke, W. Wick, T. Ossowski, Talanta, 2000, 52, 449.
39. M. Shirai, Y. Matoba, M. Tsunooka, Eur. Polym., 1995, 31 559.
40.I. Kása, B. Ágai, M. Kubinyi, A. Grofcsik, J. Molecular Struct., 1997, 408/409, 547.
41.M. Shirai, Y. Matoba, M. Tsunooka, J. Fluorescence, 1997, 7, 245.
42.E. C. A. Tahri, K. Ver Heyen, G. J. Hoornaert, F. C. de Scheyver, N. Boens, J. Chem. Soc., Perkin Trans. 2, 1998, 1573.
43.R. Ostazewski, A. Bożek, M. Palys, Z. Stojek, J. Chem. Soc.,
Perkin Trans. 2, 1999, 1193.
44.I. Leray, F. O’Reilly, J. L. H. Jiwan, J. P. Soumillion, B. Valeur, Chem. Commum., 1999, 795.
45. T. Jin, Chem. Commum., 1999, 2491.
46.J. Bourson, M. N. Borrel, B. Valeur, Anal. Chim. Acta, 1992, 257, 189.
47.S. Iwata, H. Mastsuoka, K. Tanaka, J. Chen. Soc. Perkin Trans. 1,
1997, 1357.
48. K. Kubo, S. Sakaguchi, T. Sakurai, Talanta, 1999, 49, 735.
49.T. Hayashita, S. Taniguchi, Y. Tanamura, T. Uchida, S.
Nishizawa, N. Teramae, Y. S. Jin, J. C. Lee, R. A. Bartsch,
J. Chem. Soc., Perkin Trans. 2, 2000, 1003.
50.T. Muto, M. Kimura, K. Hanabusa, H. Shirai, Tetrahedron
Lett., 1999, 40, 3199.
51.H. Miyaji, P. A. Jr, J. L. Sessler, E. R. Bleasdale, P. A. Gale,
Chem. Commum., 1999, 1723.
52.K. Kimura, H. Sakamoto, S. Kado, R. Arakawa, M. Yokoyama, Analyst, 2000, 125, 1091.
53.Y. A. Shihadeh, A. Bentio, J. M. Lloris, R. M. Máňez, T.
Pardo, J. Soto, M. D. Marcos, J. Chem. Soc., Dalton Trans.,
2000, 1199.
54.W. S. Xia, R. H. Schmehl, C. J. Li, Chem. Commum., 2000,
695.
55.H. G. Löhr, F. Vögtle, Acc. Chem. Res., 1985, 18, 65.
56.P. Tundo, J. H. Fendler, J. Am. Chem. Soc., 1980, 102, 1760.
57.V. Thanabal, V. Krishnan, J. Am. Chem. Soc., 1982, 104, 3463.
58.M. Huston, A. W. Czarnik, J. Am. Chem. Soc., 1990, 112, 7054.
59.A. P. de Silva, K. R. A. S. Sandanayake, Angew. Chem.,Int. Ed. Engl., 1990, 29, 5193.
60. A. P. de Silva, K. R. A. S. Sandanayake, Tetrahedron Lett.,
1991, 32, 421.
61.H.F. Ji, R. Dabestani, G. M. Brown, R. A. Schleban, Chem. Commum, 2000, 833.
62.T. Werner, K. Fähnrich, C. Huber, O. S. Wolfbeis, Photo. Photobio, 1999, 70, 585.
63.M. Montalti, L. Prodi, N. Zaccheroni, J. Fluorescence; 2000,
10, 71.
5-5參考文獻
1.H. T. Tsukube, Cood. Chem., 1987, B-16, 101.
2.K. E. Krakowiak, J. S. Bradshaw, Chem. Rev., 1989, 89, 929.
3.R. D. Hancock, A. E. Martell, Chem. Rev., 1989, 89, 1875.
4.L. F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes, Cambridge University Press: Cambridge, 1989, p103.
5.G. W. Gokel, J. E. Trafton, Cation Binding by Macrocycles, Marcel Dekker: New York, 1990, p253 and references cited therein.
6.T. W. Hambley, L. F. Lindoy, J. R. Reimers, P. Turner, G. Wei, A.
N. Widmer-Cooper, J. Chem. Soc., Dalton Trans, 2001, 614.
7.B. WitulsKi, M. Webber, U. Bergsträsser, J. P. Desvergne, D. M.
Bassani, H. Bouas-Laurent, Org. Lett., 2001, in press.
8.L. Kao Liu, C. S. Lin, D. S. Young, W. J. Shgu, C. H. Ueng, J. Chem. Soc. Chem. Comm., 1997, 1255.
9.C. S. Lin, L. Kao Liu, C. H. Ueng, Acta Cryst. Sec. C, 1997, C53, 574.