簡易檢索 / 詳目顯示

研究生: 林佳穎
Lin, Chia-Yin
論文名稱: 動畫的使用方式如何影響高二學生的化學學習 —以電化學單元為例
The Impact of Different Ways to Use Visualization on High School Students’ Learning in Electrochemistry
指導教授: 吳心楷
Wu, Hsin-Kai
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 111
中文關鍵詞: 多媒體化學學習電化學動畫畫圖製作動畫科學學習動機
英文關鍵詞: chemistry learning, student-generated animation
DOI URL: http://doi.org/10.6345/NTNU202000203
論文種類: 學術論文
相關次數: 點閱:300下載:48
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以中學所提到的電化學概念為例,欲探討不同的動畫使用方式,分別 是「僅觀看動畫(Visualization)」(稱為 V 組),讓學生在「觀看動畫後畫圖(Drawing)」 (稱為 VD 組),以及讓學生在「觀看動畫後製作動畫(Animation)」(稱為 VA 組),對於學生的學習成效及科學學習動機有何影響。本研究以一所市立高中, 一類組的高二學生為研究對象,共三個班級,109 人,課程模式採用 VGEM (Visualize, Generate, Evaluate, Modify,觀看、產出、評析、修正四個階段),僅 其中的 V 組無產出的階段,但三組教學時間一致。研究工具包含量化的概念診 斷測驗、科學學習動機量表,進行前、後測及延宕測驗;質性資料來自焦點學生 在課程中的對話錄音以及 VD 組、VA 組學生的成品。研究結果顯示,V 組、VD 組、VA 組之間在電化學概念上並無顯著差異,但是僅觀看動畫的 V 組,較無法 提升關於電荷平衡的概念,而 VA 組對於微觀層次和多層次概念的記憶滯留是有 顯著的效果,且透過製作動畫能夠有效地減少學生的另有概念;除此之外,VD 組、VA 組因產出方式的不同,在過程中也有很大的差異,VA 組比 VD 組有更 高的比例是與化學概念相關的對話,且能夠應用更多的先備知識,雖然三組之間 在科學學習動機上並無顯著差異,但是讓學生經過畫圖或是製作動畫的產出方式, 經過組內前後測的比較,結果顯示有助提升其學習動機。

    This study aims to explore how different ways of using visualizations influence students’ conceptual understanding and learning motivation in electrochemical concepts. 109 eleventh graders from three classes in a municipal high school were assigned to three groups: “visualization only” (V group), “drawing after watching the visualization” (VD group), and “creating animation after watching the visualization” (VA group). The instruction sequence used for the three groups followed a VGEM model (Visualize, Generate, Evaluate and Modify), except V group which did not have the “Generate” stage. All groups spent the same amount of time learning the concepts. In this mixed-methods study, multiple sources of data were collected including pre-, post-, and delayed-tests of students’ conceptual understanding, pre-, post-questionnaires of students’ motivation toward science learning, video recordings of focus students’ classroom conversations, and drawings and animations created by the VD and VA groups.
    The research results showed no significant differences in the total scores of the concept tests between the three groups. However, the item analysis revealed that V group improved less on the concepts of charge balance while VA group showed a significant effect on the memory retention of the concepts at the microscopic level and across multiple levels. The results also suggested that creating animations could effectively reduce students’ alternative conceptions. Additionally, VA and VD groups demonstrated different patterns in their conversations due to the different visualizations they created. VA group had a higher proportion of dialogues related to chemical concepts and applied more prior knowledge than VD group. Although no significant difference was found in the science learning motivation between the three groups, the paired sample t-tests within the groups showed significant increases in motivation in VA and VD groups. This suggested that drawing figures or making animations enhance students’ motivation.

    謝辭 I 摘要 V Abstract VII 目次 IX 表次 XI 圖次 XIII 第壹章 緒論 1 第一節 研究動機與背景 1 第二節 研究目的與問題 3 第三節 名詞釋義 4 第四節 研究範圍與限制 5 第貳章 文獻探討 6 第一節 學生在電化學概念的學習 6 第二節 使用多媒體工具對於學習化學的幫助 13 第三節 學生建構表徵輔助動畫學習的影響 20 第參章 研究方法 28 第一節 研究設計 28 第二節 研究對象與研究流程 31 第三節 教學與教材設計 33 第四節 資料搜集 38 第五節 資料處理與分析 43 第肆章 研究結果與發現 54 第一節 學習成效的異同 54 第二節 在產出階段的異同 65 第三節 科學學習動機的異同 75 第伍章 結論與建議 80 第一節 結論 80 第二節 討論 81 第三節 研究限制與建議 85 參考文獻 89 附錄 100 附錄一 概念診斷測驗 100 附錄二 科學學習動機量表 103 附錄三 課堂學習單(V組) 108 附錄四 課堂學習單(VD組) 109 附錄五 課堂學習單(VA組) 110 附錄六 評析學習單 111

    中文文獻
    江文瑋、劉嘉茹(2013)。運用嵌入式動畫 PPT 簡報教學之有效性探究-以高中生氣體概念學習為例。科學教育研究與發展季刊,67,51-72。
    柯明志(2002)。從心智模式的角度分析模型教學成效—以電流化學效應為例。臺灣師範大學化學系學位論文,1-136。
    張秀澂(2002)。電腦動畫融入教學對國中生電化學學習成就影響之研究。臺灣師範大學化學系在職進修碩士班學位論文,1-162。
    張欣怡、張淑苑、羅慶璋、洪振方(2015)。知識整合數位課程促進學生科學素養: 以化學反應概念為例。教育科學研究期刊,60(3),153-181。doi:10.6209/JORIES.2015.60(3).06
    劉漢欽(2006)。大學生如何應用電腦模擬學習電化學概念之研究。高雄師大學報:自然科學與科技類,20,23-42。
    蘇金豆(2018)。應用創意電化學動畫概念圖學習探究學生認知能力。教育傳播與科技研究,118,15-28。

    英文文獻
    Abraham, M. R., & Renner, J. W. (1983). Sequencing Language and Activities in Teaching High School Chemistry. A Report to the National Science Foundation.
    Acar, B., & Tarhan, L. (2007). Effect of Cooperative Learning Strategies on Students’ Understanding of Concepts in Electrochemistry. International Journal of Science and Mathematics Education, 5(2), 349-373.
    Ainsworth, S. (2008). The educational value of multiple-representations when learning complex scientific concepts. In Visualization: Theory and practice in science education (pp. 191-208): Springer.
    Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096-1097.
    Ardac, D., & Akaygun, S. (2004). Effectiveness of multimedia‐based instruction that emphasizes molecular representations on students' understanding of chemical change. Journal of Research in Science Teaching, 41(4), 317-337.
    Ardac, D., & Akaygun, S. (2005). Using Static and Dynamic Visuals to Represent Chemical Change at Molecular Level. International Journal of Science Education, 27(11), 1269-1298. doi:10.1080/09500690500102284
    Atkinson, R. K. (2002). Optimizing learning from examples using animated pedagogical agents. Journal of Educational Psychology, 94(2), 416-427.
    Barak, M., & Hussein-Farraj, R. (2012). Integrating Model-Based Learning and Animations for Enhancing Students’ Understanding of Proteins Structure and Function. Research in Science Education, 43(2), 619-636. doi:10.1007/s11165-012-9280-7
    Ben-Zvi, R., Eylon, B.-S., & Silberstein, J. (1986). Is an atom of copper malleable? Journal of Chemical Education, 63(1), 64-66.
    Berland, L. K., & Hammer, D. (2012). Framing for scientific argumentation. Journal of Research in Science Teaching, 49(1), 68-94.
    Bojczuk, M. (1982). Topic Difficulties in O-and A-Level Chemistry. School Science Review, 63(224), 545-551.
    Brooks, M. (2009). Drawing, visualisation and young children’s exploration of “big ideas”. International Journal of Science Education, 31(3), 319-341.
    Camacho, F. F., & Cazares, L. G. (1998). Partial possible models: An approach to interpret students' physical representation. Science Education, 82(1), 15-29.
    Chang, H.-Y., & Quintana, C. (2006). Student-generated animations: supporting middle school students' visualization, interpretation and reasoning of chemical phenomena. . In Proceedings of the 7th International Conference of the Learning Sciences., 71-77.
    Chang, H.-Y., Quintana, C., & Krajcik, J. S. (2010). The impact of designing and evaluating molecular animations on how well middle school students understand the particulate nature of matter. Science Education, 94(1), 73-94.
    ChanLin, L.-J. (2000). Attributes of animation for learning scientific knowledge. Journal of Instructional Psychology, 27(4), 228-228.
    Chi, M. T. (2009). Active‐constructive‐interactive: A conceptual framework for differentiating learning activities. Topics in cognitive science, 1(1), 73-105.
    Chin, C., & Osborne, J. (2010). Students' questions and discursive interaction: Their impact on argumentation during collaborative group discussions in science. Journal of Research in Science Teaching, 47(7), 883-908.
    Chiu, M.-H., & Wu, H.-K. (2009). The roles of multimedia in the teaching and learning of the triplet relationship in chemistry. In Multiple representations in chemical education (pp. 251-283): Springer.
    Ciplickas, D., Davis, J., Hess, C., Lee, S., Malavasi, E., Mohammad, A., . . . Zanella, S. (2009). Designing an integrated circuit to improve yield using a variant design element. In: Google Patents.
    Clark, D. B., Sampson, V., Chang, H.-Y., Zhang, H., Tate, E. D., & Schwendimann, B. (2012). Research on critique and argumentation from the technology enhanced learning in science center. In Perspectives on Scientific Argumentation (pp. 157-199): Springer.
    Dalebroux, A., Goldstein, T. R., & Winner, E. (2008). Short-term mood repair through art-making: Positive emotion is more effective than venting. Motivation and Emotion, 32(4), 288-295.
    De Jong, O., Acampo, J., & Verdonk, A. (1995). Problems in teaching the topic of redox reactions: actions and conceptions of chemistry teachers. Journal of Research in Science Teaching, 32(10), 1097-1110.
    De Jong, T., & Van Joolingen, W. R. (1998). Scientific Discovery Learning with Computer Simulations of Conceptual Domains. Review of Educational Research, 68(2), 179-201. doi:10.3102/00346543068002179
    De Petrillo, L., & Winner, E. (2005). Does art improve mood? A test of a key assumption underlying art therapy. Art Therapy, 22(4), 205-212.
    Doymus, K., Karacop, A., & Simsek, U. (2010). Effects of jigsaw and animation techniques on students’ understanding of concepts and subjects in electrochemistry. Educational Technology Research and Development, 58(6), 671-691. doi:10.1007/s11423-010-9157-2
    Gabel, D. L. (1993). Use of the Particle Nature of Matter in Developing Conceptual Understanding. Journal of Chemical Education, 70(3), 193-194.
    Gabel, D. L., Samuel, K., & Hunn, D. (1987). Understanding the particulate nature of matter. Journal of Chemical Education, 64(8), 695-697.
    García, R. R., Quirós, J. S., Santos, R. G., González, S. M., & Fernanz, S. M. (2007). Interactive multimedia animation with macromedia flash in descriptive geometry teaching. Computers & Education, 49(3), 615-639.
    Garnett, P. J., Garnett, P. J., & Hackling, M. W. (1995). Students' alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studeies in Science Education, 25(1), 69-96.
    Garnett, P. J., & Treagust, D. F. (1992). Conceptual difficulties experienced by senior high school students of electrochemistry: Electric circuits and oxidation‐reduction equations. Journal of Research in Science Teaching, 29(2), 121-142.
    Gilbert, J. K. (2008). Visualization: An emergent field of practice and enquiry in science education. In Visualization: Theory and practice in science education (pp. 3-24): Springer.
    Gilbert, J. K., & Treagust, D. (2009). Multiple representations in chemical education (Vol. 4): Springer.
    Grubaugh, N. D., Ladner, J. T., Kraemer, M. U., Dudas, G., Tan, A. L., Gangavarapu, K., . . . Magnani, D. M. (2017). Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature, 546(7658), 401.
    Haidar, A. H., & Abraham, M. R. (1991). A comparison of applied and theoretical knowledge of concepts based on the particulate nature of matter. Journal of Research in Science Teaching, 28(10), 919-938.
    Hameed, H., Hackling, M., & Garnett, P. J. (1993). Facilitating conceptual change in chemical equilibrium using a CAI strategy. International Journal of Science Education, 15(2), 221-230.
    Hamza, K. M., & Wickman, P. O. (2008). Describing and analyzing learning in action: An empirical study of the importance of misconceptions in learning science. Science Education, 92(1), 141-164.
    Harp, S. F., & Mayer, R. E. (1997). The role of interest in learning from scientific text and illustrations: On the distinction between emotional interest and cognitive interest. Journal of Educational Psychology, 89(1), 92-102.
    Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple‐model use in grade 11 chemistry. Science Education, 84(3), 352-381.
    Hayes, D., Symington, D., & Martin, M. (1994). Drawing during science activity in the primary school. International Journal of Science Education, 16(3), 265-277.
    Hegarty, M. (2004). Dynamic visualizations and learning: Getting to the difficult questions. Learning and Instruction, 14(3), 343-351.
    Hoban, G., Loughran, J., & Nielsen, W. (2011). Slowmation: Preservice elementary teachers representing science knowledge through creating multimodal digital animations. Journal of Research in Science Teaching, 48(9), 985-1009. doi:10.1002/tea.20436
    Hoban, G., & Nielsen, W. (2013). Learning Science through Creating a ‘Slowmation’: A case study of preservice primary teachers. International Journal of Science Education, 35(1), 119-146.
    Hogarth, S., Bennett, J., Campbell, B., Lubben, F., & Robinson, A. (2005). A systematic review of the use of small-group discussions in science teaching with students aged 11–18, and the effect of different stimuli (print materials, practical work, ICT, video/film) on students’ understanding of evidence. Research evidence in education library.
    Hubber, P., Tytler, R., & Haslam, F. (2010). Teaching and learning about force with a representational focus: Pedagogy and teacher change. Research in Science Education, 40(1), 5-28.
    Johnson, P. (1998). Progression in children's understanding of a ‘basic’particle theory: A longitudinal study. International Journal of Science Education, 20(4), 393-412.
    Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70(9), 701.
    Jong, O. D., & Treagust, D. (2002). The Teaching and Learning of Electrochemistry. In J. K. Gilbert, O. de Jong, R. Justi, D. F. Treagust, & J. H. van Driel (Eds.), Chemical Education: Towards Research-based Practice: Kluwer Academic Publishers.
    Keig, P. F., & Rubba, P. A. (1993). Translation of representations of the structure of matter and its relationship to reasoning, gender, spatial reasoning, and specific prior knowledge. Journal of Research in Science Teaching, 30(8), 883-903.
    Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877-905. doi:10.1002/sce.20226
    Kizilkaya, G., & Askar, P. (2008). The effect of an embedded pedagogical agent on the students’ science achievement. Interactive Technology and Smart Education, 5(4), 208-216.
    Kozma, R. B. (1991). Learning with media. Review of Educational Research, 61(2), 179-211.
    Kozma, R. B. (2003). Technology and classroom practices: An international study. Journal of research on technology in education, 36(1), 1-14.
    Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 34(9), 949-968.
    Lee, K.-W. L. (1999). A comparison of university lecturers' and pre-service teachers' understanding of a chemical reaction at the particulate level. Journal of Chemical Education, 76(7), 1008-1012.
    Lemke, J. (1998). Multiplying meaning. Reading science: Critical and functional perspectives on discourses of science, 87-113.
    Lin, H.-S., Yang, T.-C., Chiu, H.-L., & Chou, C.-Y. (2002). Students’ Difficulties in Learning Electrochemistry. Proc. Natl. Sci. Counc. ROC(D), 12(3), 100-105.
    Lin, H.-S., Yang, T. C., Chiu, H.-L., & Chou, C.-Y. (2002). Students' difficulties in learning electrochemistry. Procedings National Science Council Republic of China (D): Mathematics Science and Technology Education, 12(3), 100-105.
    Linn, M. C., & Eylon, B.-S. (2011). Science learning and instruction: Taking advantage of technology to promote knowledge integration: Routledge.
    Marbach-Ad, G., Rotbain, Y., & Stavy, R. (2008). Using computer animation and illustration activities to improve high school students' achievement in molecular genetics. Journal of Research in Science Teaching, 45(3), 273-292. doi:10.1002/tea.20222
    Mason, L., Lowe, R., & Tornatora, M. C. (2013). Self-generated drawings for supporting comprehension of a complex animation. Contemporary Educational Psychology, 38(3), 211-224.
    Matuk, C., Zhang, J., Uk, I., & Linn, M. C. (2019). Qualitative graphing in an authentic inquiry context: How construction and critique help middle school students to reason about cancer. Journal of Research in Science Teaching, 56(7), 905-936. doi:10.1002/tea.21533
    Mayer, R. E., & Moreno, R. (2002a). Aids to computer-based multimedia learning. Learning and Instruction, 12(1), 107-119.
    Mayer, R. E., & Moreno, R. (2002b). Animation as an Aid to Multimedia Learning. Educational Psychology Review, 14(1), 87-99.
    Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86(3), 389-401.
    Moreno, R., Mayer, R., & Lester, J. (2000). Life-like pedagogical agents in constructivist multimedia environments: Cognitive consequences of their interaction. Paper presented at the EdMedia+ Innovate Learning.
    Nakhleh, M. B., Samarapungavan, A., & Saglam, Y. (2005). Middle school students' beliefs about matter. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 42(5), 581-612.
    Novick, S., & Nussbaum, J. (1981). Pupils' understanding of the particulate nature of matter: A cross‐age study. Science Education, 65(2), 187-196.
    Osborne, R., & Freyberg, P. (1985). Learning in Science. The Implications of Children's Science: ERIC.
    Osman, K., & Lee, T. T. (2014). Impact of Interactive Multimedia Module with Pedagogical Agents on Students’ Understanding and the Motivation in the Learning of Electrochemistry. International Journal of Science and Mathematics Education, 12, 395-421.
    Paivio, A. (1990). Mental representations: A dual coding approach (Vol. 9): Oxford University Press.
    Prain, V., & Tytler, R. (2012). Learning Through Constructing Representations in Science: A framework of representational construction affordances. International Journal of Science Education, 34(17), 2751-2773. doi:10.1080/09500693.2011.626462
    Richland, L. E., Bjork, R. A., Finley, J. R., & Linn, M. C. (2005). Linking cognitive science to education: Generation and interleaving effects. Paper presented at the Proceedings of the twenty-seventh annual conference of the Cognitive Science Society.
    Robinson, S. (2004). Simulation: the practice of model development and use (Vol. 50): Wiley Chichester.
    Salomon, G. (1979). Media and symbol systems as related to cognition and learning. Journal of Educational Psychology, 71(2), 131-148.
    Sanchez, C. A., & Wiley, J. (2006). An examination of the seductive details effect in terms of working memory capacity. Memory & cognition, 34(2), 344-355.
    Sanger, M. J., & Greenbowe, T. J. (1997a). Common student misconceptions in electrochemistry: Galvanic, electrolytic, and concentration cells. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 34(4), 377-398.
    Sanger, M. J., & Greenbowe, T. J. (1997b). Students' misconceptions in electrochemistry regarding current flow in electrolyte solutions and the salt bridge. Journal of Chemical Education, 74(7), 819-823.
    Sanger, M. J., & Greenbowe, T. J. (2000). Addressing student misconceptions concerning electron flow in aqueous solutions with instruction including computer animations and conceptual change strategies. International Journal of Science Education, 22(5), 521-537. doi:10.1080/095006900289769
    Schank, P., & Kozma, R. (2002). Learning chemistry through the use of a representation-based knowledge building environment. Journal of Computers in Mathematics and Science Teaching, 21(3), 253-279.
    Schwamborn, A., Mayer, R. E., Thillmann, H., Leopold, C., & Leutner, D. (2010). Drawing as a generative activity and drawing as a prognostic activity. Journal of Educational Psychology, 102(4), 872-879.
    Serra, M. J., & Dunlosky, J. (2010). Metacomprehension judgements reflect the belief that diagrams improve learning from text. Memory, 18(7), 698-711.
    Stieff, M., Bateman, R. C., & Uttal, D. H. (2005). Teaching and learning with three-dimensional representations. In Visualization in science education (pp. 93-120): Springer.
    Thompson, J., & Soyibo, K. (2002). Effects of lecture, teacher demonstrations, discussion and practical work on 10th graders' attitudes to chemistry and understanding of electrolysis. Research in Science & Technological Education, 20(1), 25-37.
    Tippett, C. D. (2016). What recent research on diagrams suggests about learningwithrather than learningfromvisual representations in science. International Journal of Science Education, 38(5), 725-746. doi:10.1080/09500693.2016.1158435
    Tsui, C.-Y., & Treagust, D. F. (2004). Motivational aspects of learning genetics with interactive multimedia. The American Biology Teacher, 66(4), 277-285.
    Tytler, R., Prain, V., Hubber, P., & Waldrip, B. (2013). Constructing representations to learn in science: Springer Science & Business Media.
    Van Meter, P., & Garner, J. (2005). The Promise and Practice of Learner-Generated Drawing: Literature Review and Synthesis. Educational Psychology Review, 17(4), 285-325. doi:10.1007/s10648-005-8136-3
    Vermaat, H., Kramers-Pals, H., & Schank, P. (2003). The use of animations in chemical education. Paper presented at the Proceedings of the international convention of the association for educational communications and technology.
    Waldrip, B., Prain, V., & Carolan, J. (2010). Using multi-modal representations to improve learning in junior secondary science. Research in Science Education, 40(1), 65-80.
    Wiley, J. (2003). Cognitive and educational implications of visually-rich media: Images and imagination. Eloquent images: Writing visually in new media, 201-218.
    Wiley, J., Ash, I., Sanchez, C., & Jaeger, A. (2011). Clarifying readers’ goals for learning from expository science texts. Text relevance and learning from text, 353-374.
    Wiley, J., Sanchez, C. A., & Jaeger, A. J. (2014). The individual differences in working memory capacity principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2ndedn, pp. 598–619). New York, N.Y.: Cambridge University Press.
    Williamson, V. M., & Abraham, M. R. (1995). The effects of computer animation on the particulate mental models of college chemistry students. Journal of Research in Science Teaching, 32(5), 521-534.
    Wu, H.-K. (2003). Linking the microscopic view of chemistry to real-life experiences: Intertextuality in a high-school science classroom. Science Education, 87(6), 868-891. doi:10.1002/sce.10090
    Wu, H.-K., & Puntambekar, S. (2012). Pedagogical Affordances of Multiple External Representations in Scientific Processes. Journal of Science Education and Technology, 21(6), 754-767. doi:10.1007/s10956-011-9363-7
    Wu, H.-K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465-492.
    Wu, H.-K., Krajcik, J. S., & Soloway, E. (2001). Promoting understanding of chemical representations: Students' use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 821-842.
    Yang, E.-m., Andre, T., Greenbowe, T. J., & Tibell, L. (2003). Spatial ability and the impact of visualization/animation on learning electrochemistry. International Journal of Science Education, 25(3), 329-349. doi:10.1080/09500690210126784
    Yarroch, W. L. (1985). Student understanding of chemical equation balancing. Journal of Research in Science Teaching, 22(5), 449-459.
    Yaseen, Z. (2016). Student-generated animations and the teaching and learning of chemistry. (Doctoral dissertation, University of Technology Sydney). Retrieved from http://hdl.handle.net/10453/44196
    Yaseen, Z., & Aubusson, P. (2018). Exploring Student-Generated Animations, Combined with a Representational Pedagogy, as a Tool for Learning in Chemistry. Research in Science Education. doi:10.1007/s11165-018-9700-4
    Zhang, Z. H., & Linn, M. C. (2011). Can generating representations enhance learning with dynamic visualizations? Journal of Research in Science Teaching, 48(10), 1177-1198. doi:10.1002/tea.20443

    下載圖示
    QR CODE