研究生: |
賴韻文 Yun-Wen Lai |
---|---|
論文名稱: |
含硒與碲之釕金屬團簇化合物的合成與其反應探討及其他相關之研究 |
指導教授: |
謝明惠
Shieh, Ming-Huey |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
中文關鍵詞: | 金屬團簇化合物 、硒 、碲 、釕 |
英文關鍵詞: | Metal Cluster, Se, Te, Ru |
論文種類: | 學術論文 |
相關次數: | 點閱:171 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. E-Ru-CO (E = Te,Se) 系統之研究
將 K2TeO3·H2O 與 Ru3(CO)12 以莫耳數比為1:1 (原子數比 Te:Ru = 1:3) 的比例加熱反應後,可得八面體結構之產物 [PPh4]2[TeRu5(CO)14]·CH2Cl2;若將莫耳數比改為1:2/3 (原子數比Te:Ru = 1:2),可得到新型式的多核化合物 [PPh4]2[Te4Ru8(CO)19],另外發現此特殊化合物中含有3個罕見的 m5-Te 之配位鍵結模式。若進一步將 [PPh4]2[TeRu5(CO)14]·CH2Cl2 與過量的 K2TeO3·H2O 加熱後,也可得到多核之化合物 [PPh4]2[Te4Ru8(CO)19]。
另外在Se系統方面,將 K2SeO3 與 Ru3(CO)12 以莫耳數比為1:5/3 (原子數比Se:Ru = 1:5) 的比例加熱反應後,可得到化合物 [PPh4]2[SeRu5(CO)14]。當起始物的莫耳數比為1:2/3 (原子數比Se:Ru = 1:2),置於相同的反應條件下,可得到化合物 [PPh4]2[HSe2Ru4(CO)10]。此結果顯示藉由起始物的比例不同,可以控制兩種八面體結構化合物之產生。
2. E-Ru-CO (E = Te,Se) 與 Cu 之系統研究
八面體的化合物 [ERu5(CO)14]2- (E = Se、Te) 或 [HSe2Ru4(CO)10]- 與 CuX (X = Cl,Br,I) 在不同比例下反應,可以得到一系列具有單銅蓋接 ([ERu5(CO)14CuX]2-)、雙銅蓋接 ([ERu5(CO)14(CuX)2]2-)、雙銅橋接 ([E2Ru4(CO)10(CuX)2]2-) 以及四銅橋接 ([E2Ru10(CO)28Cu4X2]2-) 的新型化合物,並發現其相互間的轉換關係。
改變不同之 Cu 試劑反應,利用 [Cu(MeCN)4][BF4] 與 [TeRu5(CO)14]2- 在不同比例下反應,可以得到化合物 [Te2Ru10(CO)28Cu3Cl]2- 與 TeRu5(CO)14(CuNCMe)2。此外我們也進一步發現化合物 TeRu5(CO)14(CuNCMe)2 藉由有機溶劑極性不同可產生不同結構之異構物,同時也利用理論計算的方法來驗證此結果。
最後改以不單離 [TeRu5(CO)14]2- 的反應方式,成功地合成出第一個含有Te、Ru與Cu之金屬羰基團簇聚合物 {[PPh4]2[Te2Ru4(CO)10- Cu4Br2Cl2]·THF}¥。其陰離子利用兩個 (Cu2BrCl) 的片段將 Te2Ru4 的主體連成鏈狀聚合物,而陽離子與陰離子之間以凡得瓦力構成網狀結構。此聚合物除了結構特殊外,並發現其 energy gap 相當低約為 0.37 eV 具有特殊之semiconductor特性。
3. Se-Ru-CO 與醇類之系統研究
在 Se-Ru-CO 的系統中,藉由 K2SeO3 與 Ru3(CO)12在 MeOH 加熱可以活化 O-H 鍵進而經由 CO2 inserion 進而生成綠色化合物 [Se4Ru10(CO)24(O2COMe)]3-。而在 EtOH 與 n-CH3CH2CH2OH 方面,分別藉由 Se-Ru-CO 的金屬團簇化合物氧化了醇類而產生含酸基的片段 -OOCMe 與 -OOCEt 橋接之化合物 [Se4Ru10(CO)24- (O2CMe)]3- 與 [Se4Ru10(CO)24(O2CEt)]3-。由此可以發現 Se-Ru-CO 的化合物具有活化化學鍵的特性。
1. E-Ru-CO (E = Te, Se) System
When K2TeO3 was treated with 1 equiv of Ru3(CO)12 in methanol at 70 °C, the octahedral cluster [PPh4]2[TeRu5(CO)14]·CH2Cl2 was obtained in good yield. If K2TeO3 was treated with 2/3 equiv of Ru3(CO)12 in methanol at 80 °C, the unique high-nuclearity cluster [PPh4]2[Te4Ru8(CO)19] was obtained, which contains three novel m5-Te ligands. [PPh4]2[TeRu5(CO)14]·CH2Cl2 could transform to [PPh4]2[Te4Ru8(CO)19] upon the reaction with excess K2TeO3 in methanol at 80 °C.
On the other hand, when K2SeO3 was treated with 5/3 equiv of Ru3(CO)12 in methanol at 70 °C, the octahedral cluster [PPh4]2[SeRu5(CO)14]·CH2Cl2 was produced. Further, the reaction of K2SeO3 with 2/3 equiv of Ru3(CO)12 in methanol at 70 °C formed the hydride-bridged octahedral complex [PPh4][HSe2Ru4(CO)10].
2. E-Ru-Cu (E = Te, Se) System
A series of novel octahedron-based E-Ru-Cu (E = Te, Se) cluster complexes, [ERu5(CO)14CuX]2-, [ERu5(CO)14(CuX)2]2-, [E2Ru4(CO)10- (CuX)2]2-, and [E2Ru10(CO)28Cu4X2]2- was produced from the reactions of [ERu5(CO)14]2- with CuX (X = Cl, Br, I).
If [TeRu5(CO)14]2- was treated with [Cu(MeCN)4][BF4] in different ratios, the copper-incorporated Te-Ru-CO clusters, [Te2Ru10(CO)28- Cu3Cl]2- and TeRu5(CO)14(CuNCMe)2, were produced. Solvent-induced isomerization of TeRu5(CO)14(Cu-NCMe)2 was observed, which was supported by DFT calculation.
The first ternary Te-Ru-Cu cluster, the chain polymer {[PPh4]2[Te2Ru4(CO)10Cu4Br2Cl2]·THF}¥, was discovered from the reaction of K2TeO3 with Ru3(CO)12 in MeOH followed by the addition PPh4Br and CuCl. This infinite chain possesses the semiconducting property with a low band gap of approximately 0.37 eV.
3. Se/Ru/CO Clusters in the Alcohol System
We have synthesized a series of double-octahedron clusters [Se4Ru10(CO)24(O2COMe)]3-, [Se4Ru10(CO)24(O2CMe)]3-, and [Se4Ru10(CO)24(O2CEt)]3- from the reaction of SeO32- with Ru3(CO)12 in alcohol solutions. The X-ray analysis shows that [Se4Ru10(CO)24(O2COMe)]3- and [Se4Ru10(CO)24(O2CMe)]3- each display two Se2Ru4(CO)10 octahedra linked by the Ru2(CO)4 group which is further bridged by the O2COMe or O2CMe group. Interestingly, when [SeRu5(CO)14]2- was refluxed in MeOH under an atmosphere of CO2, the O-H activation and CO2 insertion product [Se4Ru10(CO)24(O2COMe)]3- was obtained.
1. (a) Braunstein, P.; Oro, L. A.; Raithby, P. R. Metal Clusters in Chemistry; VCH: Weinheim, 1999, vol. 1-3. (b) Shriver, D. F.; Kaesz, H. D.; Adams, R. D. The Chemistry of Metal Cluster Complexes; VCH: New York, 1990. (c) Schmid, G. Clusters and Colloids: From Theory to Applications; VCH: Weinheim, 1994. (d) de Jongh, L. J. Physics and Chemistry of Metal Cluster Compounds; Kluwer: Dordrecht, 1994.
2. Chen, M; Kumar, D.; Yi, C.-W.; Goodman, D. W. Science 2005, 310, 291.
3. Adams, R. D.; Captain, B.; Zhu, L. J. Am. Chem. Soc. 2004, 126, 3042.
4. Dyson, P. J.; Dyson, P. J.; McIndoe, J. S. Angew. Chem. Int. Ed. 2005, 44, 5772.
5. Brayshaw, S. K.; Ingleson, M. J.; Green, J. C.; Raithby, P. R.; Kociok-Khn, G.; McIndoe, J. S.; Weller, A. S. Angew. Chem. Int. Ed. 2005, 44, 6875.
6. Tran, N. T.; Powell, D. R.; Dahl, L. F. Angew. Chem. Int. Ed. 2000, 39, 4121.
7. Mller, A.; Beckmann, E.; Bgge, H.; Schmidtmann, M.; Dress, A. Angew. Chem. Int. Ed. 2002, 41, 1162.
8. Schweyer-Tihay, F.; Braunstein, P.; Estourns, C.; Guille, J. L.; Lebeau, B.; Paillaud, J. L.; Richard-Plouet, M.; Ros, J. Chem. Mater. 2003, 15, 57.
9. Thomas, J. M.; Johnson, B. F. G.; Raja, R.; Sankar, G.; Midgley, P. A. Acc. Chem. Res. 2003, 36, 20.
10. Bai, J.; Virovets, A. V.; Scheer, M. Science 2003, 300, 781.
11. (a) Nicholls, J. N. Polyhedron 1984, 3, 1307. (b) Whitmire, K. H.; Lagrone, C. B.; Rheingold, A. L. Inorg. Chem. 1986, 25, 2472. (c) Knochenko, S. N.; Pushkarevsky, N. A.; Virovets, A. V.; Scheer, M. J. Chem. Soc., Dalton Trans. 2003, 581.
12. Dikarev, E. V.; Gray, T. G.; Li, B. Angew. Chem. Int. Ed. 2005, 44, 1721.
13. Onodera, G.; Matsumoto, H.; Nishibayashi, Y.; Uemura, S. Organometallics 2005, 24, 5799.
14. (a) Zhao, X.; Chiang, C.-Y.; Miller, M. L.; Rampersad, M. V.; Darensbourg, M. Y. J. Am. Chem. Soc. 2003, 125, 518. (b) Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Yarbrough, J. C.; Darensbourg, M. Y. J. Am. Chem. Soc. 2001, 123, 9710.
15. Chrioux, F.; Therrien, B.; Sss-Fink, G. Chem. Commun. 2004, 204.
16. Salloum, D.; Gautier, R.; Potel, M.; Gougeon, P. Angew. Chem. Int. Ed. 2005, 44, 1363.
17. Cabeza, J. A.; del Ro, I.; Martnez-Mndez, L.; Miguel, D. Chem. Eur. J. 2005, ASAP.
18. Huang, S.-P.; Kanatzidis, M. G. J. Am. Chem. Soc. 1992, 114, 5477.
19. Draganjac, M.; Dhingra, S.; Huang, S.-P.; Kanatzidis, M. G. Inorg. Chem. 1990, 29, 590.
20. Mathur, P.; Thimmappa, B. H. S.; Rheingold, A. L. Inorg. Chem. 1990, 29, 4658.
21. Shieh, M.; Tsai, Y.-C.; Shieh, M.-H.; Cherng, J.-J.; Chen, H.-S.; Ueng, C.-H.; Peng, S.-M.; Lee, G.-H. Organometallics 1997, 16, 456.
22. Cauzzi, D.; Graiff, C.; Predieri, G.; Tiripicchio, A.; Vignali, C. J. Chem. Soc., Dalton Trans. 1999, 237.
23. Brandl, M.; Brunner, H.; Cattey, H.; Mugnier, Y.; Wachter, J.; Zabel, M. J. Organomet. Chem. 2002, 659, 22.
24. Hieber, W.; Gruber, J. Z. Anorg. Allg. Chem. 1958, 296, 91.
25. 詹莉芬,國立台灣師範大學碩士論文,1997。
26. Lehn, J.-M. Supramolecular Chemistry; VCH: Weinheim, 1995.
27. (a) Bai, J.; Leiner, E.; Scheer, M. Angew. Chem. Int. Ed. 2002, 41, 783. (b) Bai, J.; Virovets, A. V.; Scheer, M. Angew. Chem. Int. Ed. 2002, 41, 1737.
28. Dehnen, S.; Eichhfer, A.; Fenske, D. Eur. J. Inorg. Chem. 2002, 279.
29. Shieh, M.; Liou, Y.; Hsu, M.-H.; Chen, R.-T.; Yeh, S.-J.; Peng, S.-M.; Lee, G.-H. Angew Chem. Int. Ed. 2002, 41, 2384.
30. 謝明惠,許妙行,未發表結果。
31. Shriver, D. F.; Drezdzon, M. A. The Manpulation of Air-Sensitive Compound; Wiley: New York, 1986.
32. Kubas, G. J. Inorg. Synth. 1979, 19, 90.
33. Nelsson, K.; Oskarsson, A. Acta Chem. Scand., Ser. A 1984, 38, 79.
34. Gordon, A. J.; Ford, A. The Chemist’s Compasion.; Wiely: New York, 1972, p445.
35. 林淑芬,國立台灣師範大學碩士論文,2001。
36. (a) Liu, H. L.; Tanner, D. B.; Pullen, A. E.; Abboud, K. A.; Reynolds, J. R. Phys. Rev. B 1996, 53, 10557. (b) Liu, H. L.; Chou, L.-K.; Abboud, K. A.; Ward, B. H.; Fanucci, G. E.; Granroth, G. E.; Canadell, E.; Meisel, M. W.; Talham, D. R.; Tanner, D. B. Chem. Mater. 1997, 9, 1865.
37. Liao, P. C.; Huang, J. K.; Huang, Y. S.; Yang, T. R. Solid State Commun. 1996, 98, 279.
38. Spek, A. L. J. Appl. Cryst. 2003, 36, 7.
39. 謝明惠,朱緯廷,未發表結果。
40. 楊惠雅,國立台灣師範大學碩士論文,2000。
41. Das, B. K.; Kanatzidis, M. G. Polyhedron 1997, 16, 3061.
42. (a) Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Ueng, C.-H. Angew. Chem. Int. Ed. Engl. 1999, 38, 1252. (b) Brunner, H.; Lucas, D.; Monzon, T.; Mugnier, Y.; Nuber, B.; Stubenhofer, B.; Stckl, A. C.; Wachter, J.; Wanninger, R.; Zabel, M. Chem. Eur. J. 2000, 6, 493. (c) Brunner, H.; Stckl, A. C.; Wachter, J.; Wanninger, R.; Zabel, M. Angew. Chem. Int. Ed. Engl. 2001, 40, 2463. (d) Seidel, R.; Kliss, R.; Weigrber, S.; Henkel, G. Chem. Commun. 1994, 2791.
43. Das, B. K.; Kanatzidis, M. G. Inorg. Chem. 1995, 34, 1011.
44. Wachter, J. Eur. J. Inorg. Chem. 2004, 1367.
45. 謝明惠,朱晏頤,未發表結果。
46. Nakajima, T.; Ishiguro, A.; Wakatsuki, Y. Angew. Chem. Int. Ed. 2001, 40, 1066.
47. Tanner, D. B. Extended Linear Chain Compounds, Vol. 2 (Ed.: Miller, J. S.); Plenum: New York, 1982, Chap 5.
48. (a) Uemura, K.; Fukui, K.; Nishikawa, H.; Arai, S.; Matsumoto, K.; Oshio, H. Angew. Chem. Int. Ed. 2005, 44, 5459. (b) Mitsumi, M,; Goto, H.; Umebayashi, S.; Ozawa, Y.; Kobayashi, M.; Yokoyama, T.; Tanaka, H.; Kuroda, S.; Toriumi, K. Angew. Chem. Int. Ed. 2005, 44, 4164.
49. Pfitzner, A. Chem. Eur. J. 2000, 6, 1891.
50. Diebold, M. P.; Johnson, B. F. G.; Lewis, J.; McPartlin, M.; Powell, H. R. Polyhedron 1990, 9, 75.
51. 謝明惠,許文賢,未發表之共同結果。
52. Adams, R. D.; Captain, B.; Fu, W.; Pellechia, P. J.; Smith, M. D. Angew. Chem. Int. Ed. 2002, 41, 1951.
53. Plecnik, C. E.; Liu, S.; Chen, X.; Meyers, E. A.; Shore, S. G. J. Am. Chem. Soc. 2004, 126, 204.
54. Huheey, J. E.; Keiter, E. A.; Kieter, R. L. Inorganic Chemistry; Haper Collins: New York, 1993.
55. Shriver, D. F.; Atkins, P. W. Inorganic Chemistry; Oxford: New York, 1999.
56. (a) Freeman, M. J.; Green, M.; Orpen, A. G.; Salter, I. D.; Stone, F. G. A. Chem. Commun. 1983, 1332. (b) Freeman, M. J.; Orpen, A. G.; Salter, I. D. J. Chem. Soc., Dalton Trans. 1987, 1001.
57. Shephard, D. S.; Maschmeyer, T.; Johnson, B. F. G.; Thomas, J. M.; Sankar, G.; Ozkaya, D.; Zhou, W.; Oldroyd, R. D.; Bell, R. G. Angew. Chem. Int. Ed. 1997, 36, 2242.
58. Selby, H. D.; Roland, B. K.; Zheng, Z. P. Acc. Chem. Res. 2003, 36, 933.
59. Roncani, J. Chem. Rev. 1997, 97, 173.
60. (a) Song, H.-B.; Zhang, Z.-Z.; Mak, T. C. W. New J. Chem. 2002, 26,113. (b) Chan, W.-H.; Zhang, Z.-Z.; Mak, T. C. W.; Che, C.-M. J. Chem. Soc., Dalton Trans. 1998, 803.
61. (a) Rondon, D.; Chaudret, B.; He, X.-D. Labroue, D. J. Am. Chem. Soc. 1991, 113, 5671. (b) Rotem, M.; Shvo, Y.; Goldberg, I.; Shmuell, U. Organometallics 1984, 3, 1758. (c) Gao, Y.; Jennings, M. C.; Puddephatt, R. J. Organometallics 2001, 20, 1882.
62. Yin, X.; Moss, J. R. Coord. Chem. Rev. 1999, 181, 27.
63. Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1995, 95, 259.
64. Adams, R. D.; Horvth, I. T.; Segmller, B. E.; Yang, L.-W. Organometallics 1983, 2, 1301.
65. Adams, R. D.; Babin, J. E.; Tasi, M. Organometallics 1988, 7, 503.
66. (a) Whitmire, K. H. J. Coord. Chem. 1988, 17, 95. (b) Hermann, W. A. Angew. Chem. Int. Ed. 1986, 25, 56.
67. (a) Curtis, M. D.; Han, K. R.; Butler, W. M. Inorg. Chem. 1980, 19, 2096. (b) Klingler, R. J.; Butler, W. M.; Curtis, M. D. J. Am. Chem. Soc. 1978, 100, 5034.
68. Draper, S. M.; Hattersley, A. D.; Housecroft, C. E.; Rheingold, A. L. Chem. Commun. 1992, 1365.
69. Beswick, M. A.; Lewis, J.; Raithby, P. R.; Ramirez de Arellano, M. C. J. Chem. Soc., Dalton Trans. 1996, 4033.
70. Bradley, J. S.; Pruett, R. L.; Hill, E.; Ansell, G. B.; Leonowicz, M. E.; Modrick, M. A. Organometallics 1982, 1, 748.
71. Spek, A. L. Acta Crystallogr., Sect. A 1990, 46, C34.
72. Kepert, C. J.; Rosseinsky, M. J. Chem. Commun. 1999, 375.
73. Sherlock, S. J. Cowle, M. Singleton, E.; de V. Steyn, M. M. Organometallics 1988, 7, 1663.
74. Shiu, K. B.; Lee, H. C.; Lee, G. H.; Wang, Y. Organometallics 2002, 21, 4013.