研究生: |
謝承芳 Hsieh, Cheng-Fang |
---|---|
論文名稱: |
臺灣六都間人口遷移模型建構 Modeling Migration Patterns among Municipalities in Taiwan |
指導教授: |
張國楨
Chang, Kou-Chen |
口試委員: |
張國楨
Chang, Kou-Chen 雷祖強 Lei, Tsu-Chiang 陶宏麟 Tao, Hung-Lin |
口試日期: | 2024/06/30 |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 六都 、人口遷移 、遷移吸引力 、重力模型 、主成分分析 |
英文關鍵詞: | Six Municipalities, Population Migration, Migration Attractiveness, Gravity Model, Principal Component Analysis |
DOI URL: | http://doi.org/10.6345/NTNU202401547 |
論文種類: | 學術論文 |
相關次數: | 點閱:196 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣現今設籍於都會區內的人口數占總人口數超過七成,且都會區間的人口遷移也越發頻繁,民國112年間就有超過十九萬遷移人次,大量的人口遷移已然是各部門的重要議題,因此本研究試圖理解影響遷移吸引力之社會經濟因素,並建立符合臺灣都會區情境之人口遷移模型,藉以推估人口遷移之分配情形。本研究蒐集民國105至107年各都會區人口數與人口遷移矩陣資料,透過人口遷移的重力模型回推各都會區在均質無差異前提下之理論距離,並將其與實際距離之比值作為社會經濟因素差異所造成之遷移吸引力,再蒐集十七項社會經濟因素資料並利用主成分分析將其整合為三個社會經濟面相,透過簡單線性迴歸來建立人口遷移吸引力模型,並藉此調整原始重力模型中的距離參數,建立符合臺灣都會區情境之人口遷移重力模型。最後投入民國108年之資料推估人口遷移情形,並與實際情形進行比較。研究結果發現,臺灣都會區間社會經濟因素主要可以由「生活成本」、「生活機能」及「社會安全」三個面向來理解,其中「生活成本」及「生活機能」可顯著解釋約四成之人口遷移吸引力,生活成本越高則吸引力越小、生活機能越高則吸引力越大,並且生活機能之影響較大。此外,利用人口遷移吸引力所調整之重力模型有助於改善推估結果,而推估結果也與實際情形有相同趨勢,然而在桃園遷移至雙北及桃園遷移至高雄的低估情形最為嚴重、臺中遷移至桃園的高估情形最為嚴重,代表人口遷移吸引力仍然受其他因素所影響,是本研究無法解釋之處。
Taiwan’s population registered in municipalities now accounts for more than 70% of the total population. Inter-municipality population migration also continues to increase, with 192,726 migrations recorded in 2023. This study aims to understand the socioeconomic factors influencing migration attractiveness and to develop a model suited to the context of Taiwan's municipalities to estimate the distribution of migration. This study collected data on population and migration matrices between municipalities from 2016 to 2018. Using the Gravity Model of migration, we back-calculated the theoretical distances between municipality pairs under the assumption of homogeneity. The ratio of theoretical distances to actual distances was used to represent the migration attractiveness caused by socioeconomic differences. Subsequently, data on 17 socioeconomic factors were gathered and integrated into three socioeconomic dimensions through Principal Component Analysis. A linear regression was employed to develop a migration attractiveness model, which was then used to adjust the distance parameter in the original gravity model. This adjustment tailored the gravity model to the context of Taiwan's municipalities. Finally, data from the 2019 were used to estimate the migration and compare it with the actual migration data. This study found that the socioeconomic factors affecting inter- municipality migration in Taiwan can be understood through three dimensions: cost of living, living amenities, and social security. Cost of living and living amenities significantly explained about 40% of migration attractiveness, with higher living costs reducing attractiveness and better living amenities increasing attractiveness, with the impact of living amenities being greater. In addition, the gravity model adjusted by migration attractiveness improved the estimation results, showing trends consistent with actual migration patterns. However, the model significantly underestimated migration from Taoyuan to Taipei and Taoyuan to Kaohsiung, while it significantly overestimated migration from Taichung to Taoyuan. This indicates that migration attractiveness is still influenced by other factors not explained in this study.
張國楨、歐采瑀、王翊芬、洪怡婷、徐品翰(2015)可調整地區單元問題(MAUP) 對分析人口分布的影響。主計月刊,720,70–76。
陳宇嘉(1980)人口遷移重力模型之研究----以台灣地區五大都市為例(未出版之博士論文)。東海大學,臺中市。
Alimi, O., Mare, D. & Poot, J. (2015). Does Distance Still Matter For Internal Migration And, If So, How? Evidence From 1986 To 2006. https://doi.org/10.26686/lew.v0i0.3897
Anjomani, A. (2002). Regional growth and interstate migration. Socio-Economic Planning Science, 36(4), 239-265.
Beenstock, M., Felsenstein, D. & Rubin, Z. (2015). Immigration to the European Union from its neighborhoods: Testing welfare-chasing and related hypotheses by spatial gravity. International Journal of Manpower, 36(4), 491-517. https://doi.org/10.1108/IJM-01-2014-0010
Bunea, D. (2012). Is Internal Migration Relevant to Regional Convergence? Comparative Analysis Across Five European Countries. Romanian Journal of Regional Science, 6(2), 53-72.
Champion, T., Fotheringham, S., Rees, P., Boyle, P., & Stillwell, J. (1998). The Determinants of Migration Flows in England: A Review of Existing Sources and Data. Newcastle. Department of Geography, University of Newcastle.
Crymble, A., Dennett, A. & Hitchcock, T. (2018). Modelling regional imbalances in English plebeian migration to late eighteenth-century London. Economic History Review, 71(3), 747-771.
Day, K. M. (1992). Interprovincial Migration and Local Public Goods. The Canadian Journal of Economics / Revue canadienne d'Economique, 25(1), 123-144.
Dunteman, G. H. (1989). Principal Components Analysis. SAGE Publications, Inc.
Etzo, I. (2008). Determinants of Interregional Migration in Italy: A Panel Data Analysis. http://dx.doi.org/10.2139/ssrn.1135165
Fotheringham, A. S. & Wong, D. W. S. (1991). The Modifiable Areal Unit Problem in Multivariate Statistical Analysis. Environment and Planning A, 23(7). https://doi.org/10.1068/a231025.
Gaag, N., Wissen, L., Rees, P., Stillwell, J. & Kupiszewski, M. (2003). Study of past and future interregional migration trends and patterns within European Union countries in search of a generally applicable explanatory model. Eurostat.
Garip, F. (2014). The Impact of Migration and Remittances on Wealth Accumulation and Distribution in Rural Thailand. Demography, 51, 673-698. https://doi.org/10.1007/s13524-013-0260-y.
Groth, D., Hartmann, S., Klie, S. & Selbig, J. (2013). Principal Components Analysis. In: Reisfeld, B., Mayeno, A. (eds) Computational Toxicology. Methods in Molecular Biology, vol 930. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-059-5_22.
Gunawan, P., Kakuya, M., Hayeong, J. & Kiyoshi, K. (2014). Social Capital and Migration in Rural Area Development. Procedia Environmental Sciences, 20, 543-552. https://doi.org/10.1016/j.proenv.2014.03.067.
Lomax, N., Norman, P., Rees, P., Stillwell, J. (2013). Subnational migration in the United Kingdom:producing a consistent time series using a combination of available data and estimates. J Pop Research, 30, 265–288. https://doi.org/10.1007/s12546-013-9115-z.
Malaj, V. & Rubertis, S. (2016). Determinants of migration and the gravity model of migration – application on Western Balkan emigration flows. Migration Letters, 14(2), 204-220.
Niedomysl, T., Ernstson, U., Fransson, U. (2015). The Accuracy of Migration Distance Measures. Population, Space and Place, 23(1).
Parikh, A. & Van Leuvensteijn, M. (2002). Internal migration in regions of Germany: A panel data analysis. Economics Working Papers, 12.
Poot, J., Alimi, O., Cameron, M. P. & Maré, D. C. (2016). The Gravity Model of Migration: The Successful Comeback of an Ageing Superstar in Regional Science. IZA Discussion Paper, 10329.
Ravenstein, E.G. (1885, 1889). The laws of migration, Part 1 and Part 2. Journal of the Royal Statistical Society, 48(2), 167‐235 & 52(2), 241‐305.
RECEPOĞLU, M., & DEĞER, M. K. (2022). The Determinants of Internal Migration in Turkey: Gravity Model Results on Provinces. Reviews in Administrative and Economic Science Methodology, Research and Application, pp101-124.
Rees, P., & Willekens, F. (1986). Data and accounts. In A. Rogers & F. Willekens (Eds.), Migration and settlement: A multiregional comparative study (pp. 19–58). Dordrecht: Reidel.
Samir, K. C., and Lutz, W. (2017). The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Global Environmental Change, 42, 181-192.
Samir, K. C., Barakat, B., Goujon, A., Skirbekk, V., Sanderson, W., & Lutz, W. (2010). Projection of populations by level of educational attainment, age, and sex for 120 countries for 2005‐2050. Demographic Research, 22(15), 382‐472.
Shlens, J. (2014). A Tutorial on Principal Component Analysis. https://doi.org/10.48550/arXiv.1404.1100.
Stillwell, J., Daras, K., Lomax, N., Bell, M. & Wilson, T. (2014). The IMAGE studio: A tool for comparative internal migration analysis and modelling. Applied Spatial Analysis and Policy, 7(1), 5-23. https://doi.org/10.1007/s12061-014-9104-4
Tiebout, C. M. (1956). A Pure Theory of Local Expenditures. Journal of Political Economy, 64(5), 416-424.
Todaro, M. P. (1980). Internal migration in developing countries: a survey. In R. A. Easterlin (Ed.), Population and economic change in developing countries (pp. 361–364). University of Chicago Press.
Wang,J., Chen, W. & Yuan, F. (2014). Human mobility and evolution based on social network: An empirical analysis of Yangtze River Delta. Geographical Research, 33(2), 385-400. https://doi.org/10.11821/dlyj201402016
Zakaria, J. (2023). A Step-by-Step Explanation of Principal Component Analysis (PCA). Retrieved from https://builtin.com/data-science/step-step-explanation-principal-component-analysis
Zipf, G. K. (1946). The P1 P2/D Hypothesis: On the Intercity Movement of Persons. American Sociological Review, 11(6), 677–686. https://doi.org/10.2307/2087063