簡易檢索 / 詳目顯示

研究生: 范耿豪
論文名稱: 以霍夫轉換為基礎之智慧型快速車道線偵測
Intelligent Fast Lane Detection Based on Hough Transform
指導教授: 蘇崇彥
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 60
中文關鍵詞: 霍夫轉換道路線偵測車道偵測輔助駕駛
英文關鍵詞: Hough transform, Lane detection, Driver assistance
論文種類: 學術論文
相關次數: 點閱:211下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 車道線偵測在自動化駕駛佔有關鍵性的角色。在車道線偵測系統中,
    為了減少非車道線物件的干擾,通常需要耗費非常大的計算量。此外,傳
    統上利用霍夫轉換來偵測車道線,亦因繁重的計算量而降低其實用性。
    本論文針對上述的問題提出一個新的解決方案。首先,將偵測範圍縮
    小在靠近車輛的區域,以減少非車道線的物件干擾;再者,將車道線以直
    線近似;接著透過訂定適當初始條件,以及利用最小平方誤差法,來得到
    道路線的斜率;最後,利用霍夫轉換搭配直線方程式,來獲得車道線的位
    置。
    經由真實道路行駛所錄製的影片驗證,在特定條件如不同天候及震動
    幅度較大的狀況下,可穩定且正確的偵測出主車道線的位置。此外在執行
    速度方面,每張 640 × 480 的畫面平均只需 17 ms 即可算出車道線位置。

    Lane detection is crucial for autonomous driving. In lane detection system, to reduce interferences from non-lane marking objects, it costs a great amount of computations. Moreover, the heavy computations would cause less practicability when applying commonly used Hough transform in lane detection. A new solution of above problems is proposed in this thesis. First, the detection region is narrowed down to regions close to vehicles. This method can reduce the interferences of non-lane marking objects. Second, lane markings are approximated to straight lines for computing simplicity. Third, the slope of lane line is acquired by giving proper initial conditions and computing with the least squared error method. Finally, by applying the above information into Hough transform and linear equations, the position of lane line is located. Examined through actual on-road video, even under specific conditions such as different weathers and greater bumping, the proposed method can steadily and correctly detect the lane lines. Moreover, in executing efficiency, only 17 ms is needed to calculate out the line position in a 640 × 480 frame.

    目 錄 摘 要.................................................. i  ABSTRACT................................................ ii  誌 謝 ............................................... iii  目 錄 ................................................ iv  圖 目 錄 .............................................. vi  表 目 錄 ............................................ viii  第一章 緒論 ............................................1  1.1 研究動機與背景 ...................................... 1  1.2 研究目的 ........................................... 4  1.3 論文架構 ........................................... 5  第二章 車道偵測和追蹤的相關研究之探討 .................... 6  2.1 車道偵測相關研究 .................................... 6  2.2 霍夫轉換(Hough Transform) .......................... 8  2.3 OpenCV 介紹 ........................................ 11  2.4 座標轉換 .......................................... 12  第三章 高速路段的道路線偵測 ............................ 18  3.1 偵測區域之劃分 ..................................... 19  3.2 道路線之初始偵測 ................................... 22  3.3 連續輸入畫面之車道偵測 .............................. 31  3.4 暫存軌跡 .......................................... 34  第四章 實驗數據與模擬結果 .............................. 36  4.1 實驗設備與環境 ..................................... 36  4.2 白天車道線偵測結果 .................................. 37  4.3 夜晚車道線偵測結果 .................................. 41  4.4 陰雨天車道線偵測結果 ................................ 43  4.5 車體震動情況下偵測結果 .............................. 45  4.6 成果比較 .......................................... 46  4.7 模擬結果總結 ....................................... 51  第五章 結論與未來工作 ................................. 53  參考文獻 ............................................... 55

    參考文獻

    [1] 交通部全球資訊網
    http://www.motc.gov.tw/mocwebGIP/wSite/mp?mp=1.
    [2] 行政院衛生署 http://www.doh.gov.tw/cht2006/index_populace.aspx.
    [3] 交通部運輸研究所http://safety2.iot.gov.tw/asv/6/AVCSS.htm.
    [4] J.C. McCall and M.M. Trivedi, “Video-Based Lane Estimation and Tracking for Driver Assistance: Survey, System, and Evaluation,”IEEE Trans. Intelligent Transportation Systems 7(1), pp. 20–37, 2006
    [5] M. Beauvais and S. Lakshmanan, “CLARK: a heterogeneous sensor fusion method for finding lanes and obstacles,” Image and Vision Computing Special Issue on Intelligent Vehicles, Vol. 18, pp. 397–413, 2000.
    [6] M. Bertozzi and A. Broggi, “Real-time lane and obstacle detection on the GOLD system,” Proc. IEEE Intelligent Vehicles Symposium, Tokyo, Japan, Sep.18-20, pp.213-218, 1996.
    [7] Bertozzi, M. and A. Broggi, “GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection,” IEEE Trans. on Image Processing, vol.7, no.1, pp.62-81, Jan. 1998.
    [8] M. Bertozzi, L. Bombini, A. Broggi, P. Cerri, and P. Grisleri, “GOLD: A Framework for Developing Intelligent-Vehicle Vision Applications,”IEEE Trans. Intelligent Systems, vol. 23, no.1, pp.69–71, 2008.
    [9] S.-Y. Chen and J.-W. Hsieh, “Edge-Based Lane Change Detection and its Application to Suspicious Driving Behavior Analysis,” International Conference Intelligent Information Hiding and Multimedia Signal Processing (IIHMSP), pp.415–418, Nov. 2007
    [10] C. Lipski, B. Scholz, K. Berger, C. Linz, and T. Stich, “A Fast and Robust Approach to Lane Marking Detection and Lane Tracking,”IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), pp.57–60, March 2008
    [11] S.G. Jeong, C.S. Kim, D.Y. Lee, S.K. Ha, D.H. Lee and M.H. Lee, “Real-time lane detection forautonomous vehicle,” Proc.IEEE International Symposium. On Industrial Electronics, Vol.3, pp.1466-1471, 2001.
    [12] H.-Y. Cheng, C.-C. Yu, C.-C. Tseng, K.-C. Fan, J.-N. Hwang, and B.-S. Jeng, “Hierarchical Lane Detection for Different Types of Roads,”IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1349–1352, March 2008.
    [13] B.-F. Wu, W.-H. Chen, C.-W. Chang, C.-J. Chen, and M.-W. Chung, ”A New Vehicle Detection with Distance Estimation for Lane Change Warning Systems,” IEEE Intelligent Vehicles Symposium, pp. 698–703, June 2007
    [14] C.-Y. Su and G.-H. Fan, “An Effective and Fast Lane Detection Algorithm,” Proceedings of the 4th International Symposium on Advances in Visual Computing, vol. 5359, pp. 942-948, 2008.
    [15] L. Jia, L. Zheying, and C. Tingting, “Study on Road Recognition Algorithm,” IEEE Conference Industrial Electronics and Applications (ICIEA), pp. 2539–2541, May 2007.
    [16] Y.-U. Yim and S.-Y. Oh, “Three-Feature Based Automatic Lane Detection Algorithm (TFALDA) for Autonomous Driving,” IEEE Trans. Intelligent Transportation Systems, pp.219–225, 2003.
    [17] R. Aufrere, R. Chapuis, and F. Chausse, ”A Fast and Robust Vision-Based Road Following Algorithm,” IEEE Intelligent Vehicles Symposium, pp. 192–197, Oct. 2000.
    [18] J.P. Gonzalez and U. Ozguner,“Lane Detection Using
    Histogram-Based Segmentation and Decision Trees,” IEEE Intelligent Transportation Systems, 346–351, Oct. 2000.
    [19] A.A. Assidiq, O.O. Khalifa, M.R. Islam, and S. Khan, “Real Time Lane Detection for Autonomous Vehicles,” International Conference Computer and Communication Engineering (ICCCE), pp.82–88, May 2008.
    [20] C.-C. Wang, S.-S. Huang, and L.-C. Fu, “Driver assistance system for lane detection and vehicle recognition with night vision,” International Conference Intelligent Robots and Systems(IROS), pp.3530-3535, Aug.
    2005
    [21] C.R. Jung and C.R. Kelber, “Lane following and lane departure using a linear-parabolic model,” Image and Vision Computing, vol. 23, no.13, pp. 1192-1202, Nov. 2005.
    [22] Qing Li, Nanning Zheng, and Hong Cheng, “Springrobot: a prototype autonomous vehicle and its algorithms for lane detection,” IEEE Trans. on Intelligent Transportation Systems, vol. 5, No. 4, Dec. 2004.
    [23] C. D’Cruz and J.J. Zou, “Lane Detection for Driver Assistance and Intelligent Vehicle Applications,” International Symposium Communications and Information Technologies, pp.1291–1296, Oct. 2007.
    [24] Yue Wang, Eam Khwang Teoh, and Dinggang Shen, “Lane detection and tracking using B-Snake,” Image and Vision Computing, vol.22, pp. 269-280, 2004.
    [25] Qing Li, Nanning Zheng, and Hong Cheng, “Springrobot: a prototype autonomous vehicle and its algorithms for lane detection,” IEEE Trans. on Intelligent Transportation Systems, Vol. 5, No. 4, Dec. 2004.
    [26] OpenCV中文網站, http://www.opencv.org.cn/index.php/%E9%A6%96%E9%A1%B5.
    [27] sourceforge.net-Open Computer Vision Library, http://sourceforge.net/project/showfiles.php?group_id=22870.
    [28] Intel Software Network,
    http://www.intel.com/software/products/ipp/index.htm.
    [29] Open Source Computer Vision Library Community, http://tech.groups.yahoo.com/group/OpenCV/
    [30] R. Klette, K. Schluns, and A. Koschan, Computer Vision: Three-Dimensional Data from Images, New York, Springer, 1998.
    [31] N. Otsu, “A Threshold Selection Method from Gray-Level Histogram,” IEEE Tran. On System, Man, and Cybernetics, val. SMC-9, pp. 62-66, 1979.

    下載圖示
    QR CODE