簡易檢索 / 詳目顯示

研究生: 廖育佐
Liao, Yu-Tso
論文名稱: 脈衝雷射蒸鍍法成長氧化釤鋅薄膜之結構、光學、磁性與電性研究
Structural, optical, magnetic and electrical properties of samarium doped zinc oxide (Sm:ZnO) thin films grown by pulsed laser deposition
指導教授: 駱芳鈺
Lo, Fang-Yuh
口試委員: 駱芳鈺
Lo, Fang-Yuh
陳銘堯
Chern, Ming-Yau
林碧軒
Lin, Bi-Hsuan
趙宇強
Chao, Yu-Chiang
徐鏞元
Hsu, Yung-Yuan
口試日期: 2022/12/29
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 91
中文關鍵詞: 氧化鋅脈衝雷射蒸鍍薄膜X光光電子能譜X光繞射原子力顯微鏡光致螢光橢圓偏振光譜磁光法拉第效應超導量子磁化儀電性光電阻磁性光學特性
英文關鍵詞: Zinc oxide, Samarium, Pulsed-laser deposition, Thin film, X-ray photoelectron spectroscopy, X-ray diffraction, Atomic force microscopy, Photoluminescence, Ellipsometry, Magneto optical Faraday effect, SQUID, Electricity, Photoconductance, Magnetism, Optical
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300313
論文種類: 學術論文
相關次數: 點閱:299下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Samarium-doped zinc oxide (Sm:ZnO) thin films were grown by pulsed-laser deposition (PLD) on c-oriented sapphire substrates with Sm concentration ranging from 1 to 10 atomic percent (at.%). The oxygen partial pressure was 3×10^-1 mbar and the substrate temperature was 525°C during deposition. The structural, optical, electrical, and magnetic properties are reported.
    Composition of Sm:ZnO thin films were examined by x-ray photoelectron spectroscopy, and it shows the Sm concentration in the films slightly larger than the nominal concentration. X-ray diffraction patterns implies that Sm atoms are successfully incorporated into ZnO lattice. With increasing Sm content, the c-lattice constant decreases from 5.21 to 5.15 Å and the crystallite size decreases from 37.8 to 12.6 nm. Atomic force microscopy shows that all samples having circular shape grain surface, and the surface roughness is between 3.6 and 22.4 nm. The optical properties are investigated by photoluminescence, transmission spectroscopy, and ellipsometry. Photoluminescence results show that defects in Sm:ZnO thin films include zinc vacancy, zinc interstitials, oxygen vacancy, and oxygen interstitials. The defect density increases with increasing Sm content. Moreover, the transmittance spectra indicate the optical band gap increases from 3.30 to 3.41 eV and the exciton binding energy decreases from 70 to 30 meV.
    Resistivity of Sm:ZnO films is between 19.22 and 135.1 mΩ. Anomalous Hall effect was not observed, and all Sm:ZnO thin films are n-type. The carrier concentration and mobility are ranging from 2.7×〖10〗^18 to 21.9×〖10〗^18 cm-3 and 3.96 to 28.98 cm2/V·s, respectively. The resistances of all Sm:ZnO films decrease when irradiated with lasers of wavelengths of 450, 532, and 658 nm, and the normalized resistance response (NRR) is between 0.95‰ and 9.07‰. Bi-exponential function fitting of NRR shows two response time constant for both irradiated and unirradiated process. The shorter response time constant τ_1 is attributed to the electron-hole pair generation/recombination, with τ_(1,L)=1.2~18.6 s for the sample under irradiation and τ_(1,D)=2.5~73.2 s without irradiation. The longer response time τ_2 is attributed to the response of carriers trapped in deep level defects, with τ_(2,L)=69.5~910.0 s and τ_(2,D)=127.1~2729.2 s.
    Sm:ZnO thin films have potential at electronic and magnetic component, such as the photo detector, light-emitting applications, and Faraday rotator, due to high electron concentration, highest conductivity, short response time in photoconductivity, and high Verdet constant.

    誌謝 i Abstract iii Table of Contents iv Chapter 1. Introduction 1 Chapter 2. Background Knowlegment 5 2.1 Base material properties 5 2.1.1 Zinc oxide (ZnO) and sapphire substrate 5 2.1.2 Samarium and samarium oxide 6 2.2 Pulsed-laser deposition 8 2.3 Thin film properties and characterization 10 2.3.1 X-ray photoelectron spectroscopy: Composition analysis 10 2.3.2 X-ray diffraction: Structural properties 12 2.3.3 Atomic force microscopy: Surface morphology 16 2.3.4 Raman spectroscopy: Crystalline properties 19 2.3.5 Photoluminescence: Optical properties 22 2.3.6 Transmittance: Energy band gap analysis 28 2.3.7 Ellipsometry: Optical properties 29 2.3.8 Magnetic Property Measurement System: Magnetic properties 31 2.3.9 Magneto-optical Faraday effect 37 2.3.10 Electricity 40 2.3.11 Photoconductance 45 Chapter 3. Result and Discussion 47 3.1 Structure properties 47 3.1.1 XPS 47 3.1.2 XRD 49 3.1.3 AFM 51 3.1.4 Raman-scattering spectroscopy 54 3.2 Optical properties 56 3.2.1 Photoluminescence 56 3.2.2 Ellipsometry 59 3.2.3 Transmittance 61 3.3 Magnetic properties 64 3.3.1 Magnetism and ordering temperature 64 3.3.2 MOFE 67 3.4 Electricity properties 73 3.5 Photoconductance 78 Chapter 4. Conclusion 83 Reference 86

    1. R. E. I. Schropp and A. Madan, Journal of Applied Physics 66 (5), 2027 (1989).
    2. D. S. Bhachu, G. Sankar, and I. P. Parkin, Chemistry of Materials 24 (24), 4704 (2012).
    3. C. S. McNally, D. P. Turner, A. N. Kulak, F. C. Meldrum, and G. Hyett, Chemical Communications 48 (10), 1490 (2012).
    4. J. Hu and R. G. Gordon, Journal of Applied Physics 71 (2), 880 (1992).
    5. Y. Kang, F. Yu, L. Zhang, W. Wang, L. Chen, and Y. Li, Solid State Ionics 360, 115544 (2021).
    6. A. B. Djurišić, A. M. C. Ng, and X. Y. Chen, Progress in Quantum Electronics 34 (4), 191 (2010).
    7. P. Dhamodharan, R. Gobi, N. Shanmugam, N. Kannadasan, R. Poonguzhali, and S. Ramya, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 131, 125 (2014).
    8. M. T. Noman, N. Amor, M. Petru, A. Mahmood, and P. Kejzlar, Polymers 13 (8), 1227 (2021).
    9. S. Pyne, G. P. Sahoo, D. K. Bhui, H. Bar, P. Sarkar, S. Samanta, A. Maity, and A. Misra, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 93, 100 (2012).
    10. Q. Zhu, J. Chen, Q. Zhu, Y. Cui, L. Liu, B. Li, and X. Zhou, Materials Research Bulletin 45 (12), 2024 (2010).
    11. J. Xie, Y. Li, W. Zhao, L. Bian, and Y. Wei, Powder Technology 207 (1), 140 (2011).
    12. S. M. Youn and S. J. Choi, International Journal of Molecular Sciences 23 (11), 6074 (2022).
    13. M. Chaari and A. Matoussi, Physica B: Condensed Matter 407 (17), 3441 (2012).
    14. Z. L. Wang, Acs Nano 2 (10), 1987 (2008).
    15. M. Purica, E. Budianu, and E. Rusu, Thin Solid Films 383 (1), 284 (2001).
    16. R. Faiz, Optical Engineering 58 (1), 010901 (2019).
    17. Z. Zhou, T. Komori, M. Yoshino, M. Morinaga, N. Matsunami, A. Koizumi, and Y. Takeda, Applied Physics Letters 86 (4), 041107 (2005).
    18. M. M. Mezdrogina, M. V. Eremenko, S. M. Golubenko, and S. N. Razumov, Physics of the Solid State 54 (6), 1235 (2012).
    19. M. Wang, C. Huang, Z. Huang, W. Guo, J. Huang, H. He, H. Wang, Y. Cao, Q. Liu, and J. Liang, Optical Materials 31 (10), 1502 (2009).
    20. H. V. S. Pessoni, L. J. Q. Maia, and A. Franco, Materials Science in Semiconductor Processing 30, 135 (2015).
    21. R. S. Ajimsha, A. K. Das, B. N. Singh, P. Misra, and L. M. Kukreja, Physica E: Low-dimensional Systems and Nanostructures 42 (6), 1838 (2010).
    22. T. Tsuji, Y. Terai, M. h. b. Kamarudin, M. Kawabata, and Y. Fujiwara, Journal of Non-Crystalline Solids 358 (17), 2443 (2012).
    23. R. Kumar and H. S. Dosanjh, Journal of Physics: Conference Series 2267 (1), 012139 (2022).
    24. F. Sordello, I. Berruti, C. Gionco, M. C. Paganini, P. Calza, and C. Minero, Applied Catalysis B: Environmental 245, 159 (2019).
    25. R. Kumar, A. Umar, G. Kumar, M. S. Akhtar, Y. Wang, and S. H. Kim, Ceramics International 41 (6), 7773 (2015).
    26. P. V. Korake, A. N. Kadam, and K. M. Garadkar, Journal of Rare Earths 32 (4), 306 (2014).
    27. M. I. Ghouri, E. AHMED, N. R. Khalid, M. AHMAD, M. Ramzan, A. Shakoor, and N. A. Niaz, Journal of Ovonic Research 10 (3), 89 (2014).
    28. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287 (5455), 1019 (2000).
    29. H. J. Lee, S. Y. Jeong, C. R. Cho, and C. H. Park, Applied Physics Letters 81 (21), 4020 (2002).
    30. P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson, and G. A. Gehring, Nature Materials 2 (10), 673 (2003).
    31. D. B. Buchholz, R. P. H. Chang, J. Y. Song, and J. B. Ketterson, Applied Physics Letters 87 (8), 082504 (2005).
    32. A. R. M. Jens Jensen, Rare Earth Magnetism: Structures and Excitations. (Clarendon Press, 1991).
    33. N. Ota, arXiv (2014).
    34. K. Strnat, G. Hoffer, J. Olson, W. Ostertag, and J. J. Becker, Journal of Applied Physics 38 (3), 1001 (1967).
    35. T. Ojima, S. Tomizawa, T. Yoneyama, and T. Hori, IEEE Transactions on Magnetics 13 (5), 1317 (1977).
    36. Y. Wang, J. Piao, Y. Lu, S. Li, and J. Yi, Materials Research Bulletin 83, 408 (2016).
    37. A. Yang, Q. Hou, X. Yin, M. Qi, and Z. Wang, Solid State Communications 348-349, 114738 (2022).
    38. J. Z. Hashmi, K. Siraj, A. Latif, S. Naseem, M. Murray, and G. Jose, Journal of Alloys and Compounds 800, 191 (2019).
    39. G. Murtaza, M. A. Iqbal, Y. B. Xu, I. G. Will, and Z. C. Huang, Journal of Magnetism and Magnetic Materials 323 (24), 3239 (2011).
    40. S. Chawl, M. Saroha, and R. K. Kotnala, Electronic Materials Letters 10 (1), 73 (2014).
    41. K. Badreddine, I. Kazah, M. Rekaby, and R. Awad, Journal of Nanomaterials 2018, 1 (2018).
    42. J. Piao, L. T. Tseng, and J. Yi, Chemical Physics Letters 649, 19 (2016).
    43. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, Journal of Applied Physics 98 (4), 041301 (2005).
    44. Q. Wen, X. Wei, F. Jiang, J. Lu, and X. Xu, Materials 13 (12), 2871 (2020).
    45. L. A. L. Valerian Pishchik , Elena R. Dobrovinskaya, Sapphire: Material, Manufacturing, Applications. (Springer, 2009).
    46. Q. Wen, X. Wei, F. Jiang, J. Lu, and X. Xu, in Materials (2020), Vol. 13.
    47. J. Narayan, K. Dovidenko, A. K. Sharma, and S. Oktyabrsky, Journal of Applied Physics 84 (5), 2597 (1998).
    48. Chemical Elements - A virtual Museum, https://images-of-elements.com/samarium.php
    49. A. A. Atta, M. M. El-Nahass, K. M. Elsabawy, M. M. Abd El-Raheem, A. M. Hassanien, A. Alhuthali, A. L. I. Badawi, and A. Merazga, Pramana 87 (5), 72 (2016).
    50. H. Yang, H. Wang, H. M. Luo, D. M. Feldmann, P. C. Dowden, R. F. DePaula, and Q. X. Jia, Applied Physics Letters 92 (6), 062905 (2008).
    51. S. Kaya, E. Yilmaz, H. Karacali, A. O. Cetinkaya, and A. Aktag, Materials Science in Semiconductor Processing 33, 42 (2015).
    52. J. Mandal, K. Yoshimura, B. J. Sarkar, A. K. Deb, and P. K. Chakrabarti, Journal of Electronic Materials 48 (12), 8047 (2019).
    53. P. Kaur, S. Kaur, G. P. Singh, and D. P. Singh, Solid State Communications 171, 22 (2013).
    54. R. Eason, Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials. (Wiley-Interscience, 2006).
    55. Y. E. Lee, D. P. Norton, and J. D. Budai, Applied Physics Letters 74 (21), 3155 (1999).
    56. K. R. Chen, J. N. Leboeuf, R. F. Wood, D. B. Geohegan, J. M. Donato, C. L. Liu, and A. A. Puretzky, Journal of Vacuum Science & Technology A 14 (3), 1111 (1996).
    57. J. P. Zhang, G. He, L. Q. Zhu, M. Liu, S. S. Pan, and L. D. Zhang, Applied Surface Science 253 (24), 9414 (2007).
    58. V. Craciun, R. K. Singh, J. Perriere, J. Spear, and D. Craciun, Journal of The Electrochemical Society 147 (3), 1077 (2000).
    59. J. Adongo, Humboldt-Universität zu Berlin, 2019.
    60. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data. (Physical Electronics, 1979).
    61. M. P. Seah and W. A. Dench, Surface and Interface Analysis 1 (1), 2 (1979).
    62. B. Brunetti, E. De Giglio, D. Cafagna, and E. Desimoni, Surface and Interface Analysis 44 (4), 491 (2012).
    63. J. H. Scofield, Journal of Electron Spectroscopy and Related Phenomena 8 (2), 129 (1976).
    64. D. William and L. H. Franklin, Physical Review 6 (2), 166 (1915).
    65. Generation of X-rays, http://pd.chem.ucl.ac.uk/pdnn/inst1/xrays.htm
    66. W. H. Bragg and W. L. Bragg, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 88 (605), 428 (1913).
    67. W. Wang, GaN Characterization by X-ray Techniques. (Published ETD Collection, 2015).
    68. C. H. Ehrhardt and K. Lark-Horovitz, Physical Review 57 (7), 603 (1940).
    69. A. L. Patterson, Physical Review 56 (10), 978 (1939).
    70. U. Holzwarth and N. Gibson, Nature Nanotechnology 6 (9), 534 (2011).
    71. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction. (Pearson, 2001).
    72. Z. Guanghong, D. Yusheng, B. Flemming, and D. Mingdong, in Atomic Force Microscopy Investigations into Biology, edited by L. Frewin Christopher (IntechOpen, Rijeka, 2012), p. Ch. 7.
    73. F. J. Giessibl, Reviews of Modern Physics 75 (3), 949 (2003).
    74. M. El-Desawy, Characterization and application of aromatic self-assembled monolayers. (Bielefeld University, 2007).
    75. Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings, Surface Science Letters 290 (1), L688 (1993).
    76. T. C. Damen, S. P. S. Porto, and B. Tell, Physical Review 142 (2), 570 (1966).
    77. F. J. Manjón, D. Errandonea, A. H. Romero, N. Garro, J. Serrano, and M. Kuball, Physical Review B 77 (20), 205204 (2008).
    78. V. Russo, M. Ghidelli, P. Gondoni, C. S. Casari, and A. Li Bassi, Journal of Applied Physics 115 (7), 073508 (2014).
    79. R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, and M. J. Callahan, Physical Review B 75 (16), 165202 (2007).
    80. M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, Materials 3 (4), 2643 (2010).
    81. P. Misra, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2006.
    82. I. Pelant and J. Valenta, in Luminescence Spectroscopy of Semiconductors, edited by Ivan Pelant and Jan Valenta (Oxford University Press, 2012), p. 0.
    83. S. Lan, in digital Encyclopedia of Applied Physics (2019), pp. 1.
    84. P. A. Rodnyi and I. V. Khodyuk, Optics and Spectroscopy 111 (5), 776 (2011).
    85. K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurišić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, The Journal of Physical Chemistry B 110 (42), 20865 (2006).
    86. N. Kumar, R. Kaur, and R. M. Mehra, Journal of Luminescence 126 (2), 784 (2007).
    87. S. Vempati, J. Mitra, and P. Dawson, Nanoscale Research Letters 7 (1), 470 (2012).
    88. J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, Progress in Materials Science 58 (6), 874 (2013).
    89. A. Janotti and C. G. Van de Walle, Physical Review B 76 (16), 165202 (2007).
    90. H. R. Shih and Y. S. Chang, Materials 10 (7), 779 (2017).
    91. G. H. Dieke, American Journal of Physics 38 (3), 399 (1970).
    92. J. Chen, W. Cranton, and M. Fihn, Handbook of Visual Display Technology. (Springer, 2012).
    93. B. Wu, H. T. Nguyen, Z. Ku, G. Han, D. Giovanni, N. Mathews, H. J. Fan, and T. C. Sum, Advanced Energy Materials 6 (14), 1600551 (2016).
    94. T. G. Mayerhöfer, S. Pahlow, and J. Popp, Chemphyschem 21 (18), 2029 (2020).
    95. J. Tauc, R. Grigorovici, and A. Vancu, physica status solidi (b) 15 (2), 627 (1966).
    96. E. A. Davis and N. F. Mott, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 22 (179), 0903 (1970).
    97. B. D. Viezbicke, S. Patel, B. E. Davis, and D. P. Birnie Iii, physica status solidi (b) 252 (8), 1700 (2015).
    98. R. J. Elliott, Physical Review 108 (6), 1384 (1957).
    99. H. W. Chen, D. P. Gulo, Y. C. Chao, and H. L. Liu, Scientific Reports 9 (1), 18253 (2019).
    100. J. Shi, H. Zhang, Y. Li, J. J. Jasieniak, Y. Li, H. Wu, Y. Luo, D. Li, and Q. Meng, Energy & Environmental Science 11 (6), 1460 (2018).
    101. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications. (Wiley, 2007).
    102. MPMS 3 User’s Manual. (QuantumDesign).
    103. S. L. Mike McElfresh Effects of Magnetic Field Uniformity on the Measurement of Superconducting Samples. (Quantum Design).
    104. R. L. Fagaly, Review of Scientific Instruments 77 (10), 101101 (2006).
    105. B. D. Josephson, Physics Letters 1 (7), 251 (1962).
    106. N. Miura, in Comprehensive Semiconductor Science and Technology, edited by Pallab Bhattacharya, Roberto Fornari, and Hiroshi Kamimura (Elsevier, Amsterdam, 2011), pp. 256.
    107. I. M. Boswarva, R. E. Howard, and A. B. Lidiard, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 269 (1336), 125 (1997).
    108. M. J. Stephen and A. B. Lidard, Journal of Physics and Chemistry of Solids 9 (1), 43 (1959).
    109. P. Mihailovic and S. Petricevic, Sensors 21 (19), 6564 (2021).
    110. H. S. Bennett and E. A. Stern, Physical Review 137 (2A), A448 (1965).
    111. 蔡伟, 邢俊晖, and 杨志勇, 物理学报 66 (18), 187801 (2017).
    112. P. S. Hauge and F. H. Dill, IBM Journal of Research and Development 17 (6), 472 (1973).
    113. L. J. van der Pauw, in Semiconductor Devices: Pioneering Papers (WORLD SCIENTIFIC, 1991), pp. 174.
    114. G. D. Mahan, in Applied Mathematics, edited by Gerald Dennis Mahan (Springer US, Boston, MA, 2002), pp. 141.
    115. E. H. Hall, American Journal of Mathematics 2 (3), 287 (1879).
    116. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. (Wiley-Interscience, 2006).
    117. O. S. o. America, Handbook of Optics, Volume 1: Fundamentals, Techniques, and Design. (McGraw-Hill Professional, 1994).
    118. S. K. Mishra, R. K. Srivastava, S. G. Prakash, R. S. Yadav, and A. C. Panday, 18 (4), 467 (2010).
    119. D. A. Neamen, Semiconductor Physics And Devices: Basic Principles. (McGraw-Hill, 2011).
    120. J. Lang, Q. Zhang, Q. Han, Y. Fang, J. Wang, X. Li, Y. Liu, D. Wang, and J. Yang, Materials Chemistry and Physics 194, 29 (2017).
    121. G. Zhang, J. Lang, Q. Zhang, Q. Han, X. Li, J. Wang, J. Wang, and J. Yang, Journal of Materials Science: Materials in Electronics 29 (19), 16534 (2018).
    122. Wu, Yang, Lin, and Xu, Molecules 24 (20), 3657 (2019).
    123. B. T. Sone, E. Manikandan, A. Gurib-Fakim, and M. Maaza, Journal of Alloys and Compounds 650, 357 (2015).
    124. H. Brunckova, M. Kanuchova, H. Kolev, E. Mudra, and L. Medvecky, Applied Surface Science 473, 1 (2019).
    125. Y. Kim, H. Schlegl, K. Kim, J. T. S. Irvine, and J. H. Kim, Applied Surface Science 288, 695 (2014).
    126. M. Agarwal, S. K. Garg, K. Asokan, D. Kanjilal, and P. Kumar, Rsc Advances 7 (23), 13836 (2017).
    127. C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, Physical Review 181 (3), 1351 (1969).
    128. L. Khomenkova, V. I. Kushnirenko, N. M. Osipyonok, A. F. Singaevsky, G. S. Pekar, K. Avramenko, V. V. Strelchuk, and L. V. Borkovska, ECS Transactions 66 (1), 321 (2015).
    129. J. M. Calleja and M. Cardona, Physical Review B 16 (8), 3753 (1977).
    130. M. S. Aida and M. Hjiri, Journal of Materials Science: Materials in Electronics 31 (13), 10521 (2020).
    131. S. Lin, H. He, Z. Ye, B. Zhao, and J. Huang, Journal of Applied Physics 104 (11), 114307 (2008).
    132. J. Grabowska, A. Meaney, K. K. Nanda, J. P. Mosnier, M. O. Henry, J. R. Duclère, and E. McGlynn, Physical Review B 71 (11), 115439 (2005).
    133. P. V. Ramakrishna, D. B. R. K. Murthy, D. L. Sastry, and K. Samatha, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 129, 274 (2014).
    134. P. Vincent, D.-K. Kim, J.-H. Kwon, J.-H. Bae, and H. Kim, Thin Solid Films 660, 558 (2018).
    135. M. Ghanipour and D. Dorranian, Journal of Nanomaterials 2013, 897043 (2013).
    136. F. Yakuphanoglu, S. Ilican, M. Caglar, and Y. Caglar, Superlattices and Microstructures 47 (6), 732 (2010).
    137. J. I. Pankove, Optical Processes in Semiconductors. (Dover Publications, 2010).
    138. V. H.-T. Thi and B.-K. Lee, Materials Research Bulletin 96, 171 (2017).
    139. Q. Gao, Y. Dai, C. Li, L. Yang, X. Li, and C. Cui, Journal of Alloys and Compounds 684, 669 (2016).
    140. M. M. Ba-Abbad, M. S. Takriff, A. Benamor, M. S. Nasser, E. Mahmoudi, and A. W. Mohammad, Journal of Sol-Gel Science and Technology 85 (1), 178 (2018).
    141. K. Habanjar, M. Almoussawi, A. M. Abdallah, and R. Awad, Physica B: Condensed Matter 598, 412444 (2020).
    142. V. Etacheri, R. Roshan, and V. Kumar, Acs Applied Materials & Interfaces 4 (5), 2717 (2012).
    143. Z. N. Kayani, M. Sahar, S. Riaz, S. Naseem, and Z. Saddiqe, Optical Materials 108, 110457 (2020).
    144. D. Moses, J. Wang, A. J. Heeger, N. Kirova, and S. Brazovski, Proceedings of the National Academy of Sciences 98 (24), 13496 (2001).
    145. J. Qi, Y. Yang, L. Zhang, J. Chi, D. Gao, and D. Xue, Scripta Materialia 60 (5), 289 (2009).
    146. D. L. Hou, X. J. Ye, X. Y. Zhao, H. J. Meng, H. J. Zhou, X. L. Li, and C. M. Zhen, Journal of Applied Physics 102 (3), 033905 (2007).
    147. D. Chakraborti, G. R. Trichy, J. T. Prater, and J. Narayan, Journal of Physics D: Applied Physics 40 (24), 7606 (2007).
    148. Q. L. Lin, G. P. Li, N. N. Xu, H. Liu, D. J. E, and C. L. Wang, The Journal of Chemical Physics 150 (9), 094704 (2019).
    149. M. F. Hansen and S. Mørup, Journal of Magnetism and Magnetic Materials 203 (1), 214 (1999).
    150. S. A. Majetich, T. Wen, and O. T. Mefford, Mrs Bulletin 38 (11), 899 (2013).
    151. T. Isayama, Y. Takahashi, N. Tanaka, K. Toyoda, K. Ishikawa, and T. Yabuzaki, Physical Review A 59 (6), 4836 (1999).
    152. N. Rajamanickam, S. Rajashabala, and K. Ramachandran, Journal of Luminescence 146, 226 (2014).
    153. F. Oliveira, M. F. Cerqueira, M. I. Vasilevskiy, T. Viseu, J. A. de Campos, A. G. Rolo, J. S. Martins, N. A. Sobolev, and E. Alves, Thin Solid Films 518 (16), 4612 (2010).
    154. H. Yi, C. Li, G. Qiang, P. Fufei, W. Jianxiang, S. Yana, and W. Tingyun, presented at the Proc.SPIE, 2013 (unpublished).
    155. A. M. Unwin, Journal of Applied Physics 36 (9), 2967 (1965).
    156. Q. Chen and Q. Ma, Journal of Non-Crystalline Solids 530, 119803 (2020).
    157. I. L. Snetkov, R. Yasuhara, A. V. Starobor, E. A. Mironov, and O. V. Palashov, IEEE Journal of Quantum Electronics 51 (7), 1 (2015).

    下載圖示
    QR CODE