簡易檢索 / 詳目顯示

研究生: 彭博謙
Peng, Bo-Chien
論文名稱: 精微銑削加工陶瓷粉末高分子複合材料應用於太赫茲光學元件之米氏共振特性研究
Mie Resonance Characteristics of Terahertz Optical Components by Micro Milling Polymer Composite Materials
指導教授: 程金保
Cheng, Chin-Pao
楊承山
Yang, Chan-Shan
口試委員: 程金保
Cheng, Chin-Pao
楊承山
Yang, Chan-Shan
鄧敦平
Teng, Tun-Ping
王星豪
Wang, Shing-Hoa
李仰淳
Lee, Yang-Chun
口試日期: 2024/07/30
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 104
中文關鍵詞: 太赫茲米氏共振精微銑削高分子材料陶瓷材料
英文關鍵詞: Terahertz, Mie Resonance, Micro Milling, Polymer, Ceramic
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401699
論文種類: 學術論文
相關次數: 點閱:47下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應6G通訊的到來及無人自駕車的應用需求,科學家們致力於高頻元件的研究,不管是調變器或是濾波器,在未來皆扮演舉足輕重的地位。然而普遍的調變器或是濾波器皆為金屬材料,有損耗極大的硬傷,因此本研究嘗試使用陶瓷材料ZrSiO4粉末與高分子複合材料PMMA粉末實現擁有高品質因子的共振結構。研究中嘗試使用多種比例進行均勻混合,將混合好的粉末以高溫高壓方式製作成圓形柱狀試片,先由CNC車床將柱狀試片切成直徑約32 mm、厚度約為1.2 mm的圓形薄片進行XRD量測分析樣品結晶狀況及晶體結構,再使用THz-TDS量測樣品折射率。接著將樣品實際量測出結果代入COMSOL Multiphysics®內波光學模組進行模擬。結果顯示,在0.20 THz到0.32 THz頻率之間,並且折射率約為1.8時寬度約為500 µm、深度約為1500 µm的連續中空溝槽結構,會產生共振的現象,之後將模擬出的結果,在3D建模繪圖上建模,轉檔後透過五軸CNC在圓形試片上加工出連續的中空溝槽結構。本實驗採用加工完正面後再翻面加工背面的方式,並透過3D列印的夾冶具協助定位,以此達到正反兩面銑削後之結構能精準的對齊。加工完成後,以雷射共軛焦顯微鏡量測樣品表面粗糙度及使用光學顯微鏡量測實際尺寸與設定之尺寸誤差。最後再進行THz-TDS量測結構共振現象,結果顯示在0.26 THz有共振特徵峰,與模擬出的結果特徵峰相同。本實驗證明有能力根據模擬結果,設計出對應結構,減少該波段的穿透率,未來在光子學、感測及通訊等領域中,可以根據該元件使用的波段及應用場合,選擇合適的尺寸,透過CNC的加工,完成多樣化的元件。

    In response to the advent of 6G communication and the application needs of autonomous driving, scientists are dedicated to researching high-frequency components, whether modulators or filters, which will play a crucial role in the future. However, common modulators or filters are typically made of metallic materials, which suffer from significant losses. Therefore, this study attempts to use ceramic material ZrSiO4 powder and polymer composite material PMMA powder to achieve a resonant structure with a high-quality factor. The study attempts to mix various proportions uniformly and make circular cylindrical specimens from the mixed powders using high temperature and high pressure. First, the cylindrical specimens are cut into circular thin slices with a diameter of about 32 mm and a thickness of about 1.2 mm using a CNC lathe for XRD measurement to analyze the sample's crystallinity and crystal structure. Then, THz-TDS is used to measure the refractive index of the samples. Subsequently, the measured results are input into the COMSOL Multiphysics® wave optics module for simulation. The results show that at frequencies between 0.20 THz and 0.32 THz, and with a refractive index of about 1.8, a continuous hollow groove structure with a width of approximately 500 µm and a depth of approximately 1500 µm produces a resonant phenomenon. The simulated results are then used to create a model in 3D modeling software, which is converted and processed on the circular specimens using a five-axis CNC to create continuous hollow groove structures. The experiment adopts a method of processing the front side first and then the back side, and uses 3D-printed jigs for positioning to ensure that the structures on both sides are accurately aligned after milling. After processing, a laser confocal microscope is used to measure the surface roughness of the samples, and an optical microscope is used to measure the actual dimensions and the dimensional errors from the set values. Finally, THz-TDS is used to measure the resonant phenomenon of the structure. The results show a resonant peak at 0.26 THz, which matches the simulated result. This experiment proves the ability to design corresponding structures based on simulation results, reducing the transmittance in that band. In the future, in fields such as photonics, sensing, and communication, appropriate sizes can be selected according to the band and application scenario of the component, and diverse components can be completed through CNC processing.

    摘要 i Abstract ii 致謝 iv 目錄 vi 表目錄 ix 圖目錄 xi 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻探討 3 2.1 太赫茲簡介 3 2.2 調製器 7 2.3 共振現象 12 2.4 陶瓷材料與高分子材料 18 2.4.1陶瓷材料氧化鋁、矽酸鋯 18 2.4.2 PMMA高分子材料 20 2.5 加工方式比較 24 2.5.1傳統加工 24 2.5.2非傳統加工 27 第三章 實驗方法與步驟 29 3.1 實驗架構 29 3.2 實驗材料 31 3.2.1高分子粉末與陶瓷粉末 31 3.2.2加工刀具 32 3.3 混合粉末樣品製備 33 3.3.1降低粉末粒徑 34 3.3.2 Al2O3粉末與PMMA粉末混合 35 3.3.3 ZrSiO4粉末與PMMA粉末混合 36 3.3.4金相鑲埋機高溫高壓成型 37 3.4 XRD結晶相分析 38 3.5 紫外光/可見光/近紅外光光譜量測系統 39 3.6 傅立葉紅外線光譜儀量測系統 40 3.7 THz-TDS量測 41 3.8 共振模擬與結構設計 42 3.9 模具製作 47 3.10 CNC車床加工機、CNC五軸加工機 48 3.11 結構加工方式與翻面切削 50 3.12 共軛焦量測與分析 51 第四章 結果與討論 52 4.1 不同混合比例樣品製作 52 4.2 材料性質量測 53 4.2.1 UV-VIS-NIR光譜量測系統 53 4.2.2 XRD量測 59 4.2.3 FTIR傅立葉紅外線光譜儀 60 4.2.4 THz-TDS量測 66 4.3 COMSOL模擬結果 73 4.4 中空槽狀試片加工與外觀 75 4.4.1不同切削參數加工狀況 75 4.4.2翻面切削過程與說明 79 4.4.3 3D列印夾冶具加工狀況 80 4.4.4試片表面觀察與尺寸量測 82 4.5 THz-TDS穿透頻譜圖量測 86 第五章 結論與未來展望 91 5.1 結論 91 5.2 未來展望 92 參考文獻 93

    [1] Rappaport, T. S., Xing, Y., Kanhere, O., Ju, S., Madanayake, A., Mandal, S., & Trichopoulos, G. C. "Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond," IEEE Access 7, 78729-78757(2019).
    [2] Zhang, Z., Xiao, Y., Ma, Z., Xiao, M., Ding, Z., Lei, X., & Fan, P., "6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies," IEEE Vehicular Technology Magazine 14, 28-41 (2019).
    [3] Rahm, M., Li, J. S., & Padilla, W. J. "THz wave modulators: a brief review on different modulation techniques." Journal of Infrared, Millimeter, and Terahertz Waves 34 ,1-27 (2013).
    [4] Ma, Z. T., Geng, Z. X., Fan, Z. Y., Liu, J. & Chen, H. D. "Modulators for terahertz communication: The current state of the art. " Research (2019).
    [5] Chen, H. T., Padilla, W. J., Zide, J. M., Gossard, A. C., Taylor, A. J., & Averitt, R. D. "Active terahertz metamaterial devices." Nature 444.7119 ,597-600 (2006).
    [6] Holloway, C. L., Kuester, E. F., Baker-Jarvis, J., & Kabos, P. "A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix." IEEE Transactions on Antennas and Propagation, 51(10), 2596-2603 (2003).
    [7] Gopalan, P., & Sensale‐Rodriguez, B. "2D materials for terahertz modulation." Advanced Optical Materials 8.3 (2020).
    [8] Carlberg, P., Graczyk, M., Sarwe, E. L., Maximov, I., Beck, M., & Montelius, L. "Lift-off process for nanoimprint lithography." Microelectronic engineering, 67, 203-207 (2003).
    [9] Watanabe, A. O., Ali, M., Sayeed, S. Y. B., Tummala, R. R., & Pulugurtha, M. R. "A review of 5G front-end systems package integration." IEEE Transactions on Components, Packaging and Manufacturing Technology 11.1 ,118-133 (2020).
    [10] Wei, Y.A. "Magnetically Tunable Terahertz Phase Modulator Based on the Ferrofluid," National Taiwan Normal University, Master’s Thesis, (2020).
    [11] Gezimati, Mavis, and Ghanshyam Singh. "Advances in terahertz technology for cancer detection applications." Optical and Quantum Electronics 55.2 (2023).
    [12] Ge, H., Sun, Z., Jiang, Y., Wu, X., Jia, Z., Cui, G., & Zhang, Y. "Recent advances in THz detection of water." International Journal of Molecular Sciences 24.13 (2023).
    [13] Singhal, D., & Curatolo, W. "Drug polymorphism and dosage form design: a practical perspective." Advanced drug delivery reviews 56.3 ,335-347 (2004).
    [14] Tzydynzhapov, G., Gusikhin, P., Muravev, V., Dremin, A., Nefyodov, Y., & Kukushkin, I. "New real-time sub-terahertz security body scanner." Journal of Infrared, Millimeter, and Terahertz Waves 41 ,632-641 (2020).
    [15] Woodward, R. M., Wallace, V. P., Pye, R. J., Cole, B. E., Arnone, D. D., Linfield, E. H., & Pepper, M. "Terahertz pulse imaging of ex vivo basal cell carcinoma." Journal of Investigative Dermatology 120.1 ,72-78 (2003).
    [16] Trontelj, J., & Sešek, A. "Electronic terahertz imaging for security applications." Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications IX. Vol. 9747. SPIE (2016).
    [17] Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne, A., Li, J., Niyato, D. "6G Internet of Things: A comprehensive survey." IEEE Internet of Things Journal 9.1 ,359-383 (2021).
    [18] Ylianttila, M., Kantola, R., Gurtov, A., Mucchi, L., Oppermann, I., Yan, Z. "6G white paper: Research challenges for trust, security and privacy." arXiv preprint arXiv:2004.11665 (2020).
    [19] Hajiyat, Z. R., Ismail, A., Sali, A., & Hamidon, M. N. "Antenna in 6G wireless communication system: Specifications, challenges, and research directions." Optik 231 (2021): 166415.
    [20] Huang, Y., Shen, Y., & Wang, J. "From terahertz imaging to terahertz wireless communications." Engineering 22 ,106-124 (2023).
    [21] Tataria, H., Shafi, M., Molisch, A. F., Dohler, M., Sjöland, H., & Tufvesson, F. "6G wireless systems: Vision, requirements, challenges, insights, and opportunities." Proceedings of the IEEE 109.7 ,1166-1199 (2021).
    [22] Zhao, Z.-w., M.-g. Zhang, and Z.-s. Wu, "Analytic specific attenuation model for rain for use in prediction methods". International Journal of Infrared and millimeter waves, p. 113-120., 2001.
    [23] Yi, X., Wang, C., Hu, Z., Holloway, J. W., Khan, M. I. W., Ibrahim, M. "Emerging terahertz integrated systems in silicon." IEEE Transactions on Circuits and Systems I: Regular Papers 68.9 ,3537-3550 (2021).
    [24] Sarieddeen, H., Alouini, M. S., & Al-Naffouri, T. Y. "An overview of signal processing techniques for terahertz communications." Proceedings of the IEEE 109.10 ,1628-1665 (2021).
    [25] Kleine-Ostmann, T., & Nagatsuma, T. "A review on terahertz communications research." Journal of Infrared, Millimeter, and Terahertz Waves 32 ,143-171 (2011).
    [26] Zhou, J., Chowdhury, D. R., Zhao, R., Azad, A. K., Chen, H. T., Soukoulis, C "Terahertz chiral metamaterials with giant and dynamically tunable optical activity." Physical Review B 86.3 ,035448 (2012).
    [27] Necker, N. E., Libon, I. H., Hempel, M., Feldmann, J., Koch, M., & Dawson, P. "An optically-driven THz-modulator." Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Edition. CLEO'99. Conference on Lasers and Electro-Optics (IEEE Cat. No. 99CH37013). IEEE, 1999.
    [28] Li, J. "Terahertz modulator using photonic crystals." Optics Communications 269.1 ,98-101 (2007).
    [29] Kim, D. K., & Citrin, D. S. "Frequency and amplitude modulation in terahertz-sideband generation in quantum wells." Applied Physics Letters 94.2 (2009).
    [30] Libon, I., Baumgärtner, S., Hempel, M., Hecker, N. E., Feldmann, J., Koch, M., & Dawson, P.. An optically controllable terahertz filter. Applied Physics Letters, 76(20), 2821-2823 (2000).
    [31] Bai, Y., Chen, K., Liu, H., Bu, T., Cai, B., Xu, J., & Zhu, Y. "Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect." Optics Communications 353 ,83-89 (2015).
    [32] Kersting, R., Strasser, G., & Unterrainer, K. "Terahertz phase modulator." Electronics Letters 36.13 ,1 (2000).
    [33] Kleine-Ostmann, T., Dawson, P., Pierz, K., Hein, G., & Koch, M. "Room-temperature operation of an electrically driven terahertz modulator." Applied physics letters 84.18 ,3555-3557 (2004).
    [34] Ma, Z. T., Geng, Z. X., Fan, Z. Y., Liu, J., & Chen, H. D. "Modulators for terahertz communication: The current state of the art." Research (2019).
    [35] Li, Q., Tian, Z., Zhang, X., Singh, R., Du, L., Gu, J. "Active graphene–silicon hybrid diode for terahertz waves." Nature communications 6.1 ,7082 (2015).
    [36] Jiang, R., Han, Z., Sun, W., Du, X., Wu, Z., & Jung, H. S. "Ferroelectric modulation of terahertz waves with graphene/ultrathin-Si: HfO2/Si structures." Applied Physics Letters 107.15 (2015).
    [37] Cavalleri, A., Tóth, C., Siders, C. W., Squier, J. A., Ráksi, F., Forget, P., & Kieffer, J. C. "Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition." Physical review letters 87.23 ,237401 (2001).
    [38] Liu, M., Hwang, H. Y., Tao, H., Strikwerda, A. C., Fan, K., Keiser, G. R. "Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial." Nature 487.7407 ,345-348 (2012).
    [39] Liu, X., Xiong, L., Yu, X., He, S., Zhang, B., & Shen, J. "Magnetically controlled terahertz modulator based on Fe3O4 nanoparticle ferrofluids." Journal of Physics D: Applied Physics 51.10 ,105003 (2018).
    [40] Han, Z., Kohno, K., Fujita, H., Hirakawa, K., & Toshiyoshi, H. "Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array." IEEE Journal of Selected Topics in Quantum Electronics 21.4 , 114-122 (2014).
    [41] Zheludev, N. I., & Kivshar, Y. S. "From metamaterials to metadevices." Nature materials, 11.11, 917-924 (2012).
    [42] Zhang, J., MacDonald, K. F., & Zheludev, N. I. "Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial." Optics express 21.22 ,26721-26728 (2013).
    [43] Kruk, S., & Kivshar, Y. "Functional meta-optics and nanophotonics governed by Mie resonances." Acs Photonics 4.11 ,2638-2649 (2017).
    [44] 陳國平,台灣研究亮點,光學超穎界面:連續域束縛態於雷射與量子應用 (2021).
    [45] Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D., & Soljačić, M. "Bound states in the continuum." Nature Reviews Materials 1.9 ,1-13 (2016).
    [46] Azzam, S. I., Shalaev, V. M., Boltasseva, A., & Kildishev, A. V. "Formation of bound states in the continuum in hybrid plasmonic-photonic systems." Physical review letters 121.25 ,253901 (2018).
    [47] Han, S., Cong, L., Srivastava, Y. K., Qiang, B., Rybin, M. V., Kumar, A. "All‐dielectric active terahertz photonics driven by bound states in the continuum." Advanced Materials 31.37 ,1901921 (2019).
    [48] Li, J., Li, J., Zheng, C., Yue, Z., Wang, S., Li, M. "Free switch between bound states in the continuum (BIC) and quasi-BIC supported by graphene-metal terahertz metasurfaces." Carbon 182 ,506-515 (2021).
    [49] Blanchard, C., Hugonin, J. P., & Sauvan, C. "Fano resonances in photonic crystal slabs near optical bound states in the continuum." Physical Review B 94.15 ,155303 (2016).
    [50] Kodigala, A., Lepetit, T., Gu, Q., Bahari, B., Fainman, Y., & Kanté, B. "Lasing action from photonic bound states in continuum." Nature 541.7636 ,196-199 (2017).
    [51] Han, S., Cong, L., Srivastava, Y. K., Qiang, B., Rybin, M. V., Kumar, A. "All‐dielectric active terahertz photonics driven by bound states in the continuum." Advanced Materials 31.37 ,1901921 (2019).
    [52] Chen, X., Han, J., Zhang, W., Zhang, L., & Liu, C. "Silica‐based ceramic core for aviation applications: Facile pore filling and flexural strength improvement." International Journal of Applied Ceramic Technology 16.6 ,2181-2189 (2019).
    [53] Balasubramanian, S. B. G. B., Gurumurthy, B., & Balasubramanian, A. "Biomedical applications of ceramic nanomaterials: a review," Int. J. Pharm. Sci. Res. 8(12), 4950-4959 (2017).
    [54] Klein, A. K., Hammler, J., Balocco, C., & Gallant, A. J. "Machinable ceramic for high performance and compact THz optical components," Opt. Mater. Express 8(7), 1968-1975 (2018).
    [55] Kumar, A. S., Durai, A. R., & Sornakumar, T. "The effect of tool wear on tool life of alumina-based ceramic cutting tools while machining hardened martensitic stainless steel," Journal of Materials Processing Technology 173, 151-156 (2006).
    [56] Houska, J., Blazek, J., Rezek, J., & Proksova, S. "Overview of optical properties of Al2O3 films prepared by various techniques," Thin Solid Films 520, 5405-5408 (2012).
    [57] Nakamori, F., Ohishi, Y., Muta, H., Kurosaki, K., Fukumoto, K. I., & Yamanaka, S. "Mechanical and thermal properties of ZrSiO4." Journal of Nuclear Science and Technology 54.11 ,1267-1273 (2017).
    [58] Peng, H. Y., Wei, Y. A., Lin, K. C., Hsu, S. F., Chen, J. C., Cheng, C. P., & Yang, C. S. "Terahertz characterization of functional composite material based on ABS mixed with ceramic powder." Optical Materials Express 13.9 ,2622-2632 (2023).
    [59] Mittal, R., Chaplot, S. L., Parthasarathy, R., Bull, M. J., & Harris, M. J. "Lattice dynamics calculations and phonon dispersion measurements of zircon, ZrSiO4," Physical Review B 62, 12089-12094 (2000).
    [60] Ali, U., Karim, K. J. B. A., & Buang, N. A. "A review of the properties and applications of poly (methyl methacrylate)(PMMA)." Polymer Reviews 55.4 ,678-705 (2015).
    [61] Elshereksi, N. W., Muchtar, A., & Azhari, C. H. "Effects of nanobarium titanate on physical and mechanical properties of poly (methyl methacrylate) denture base nanocomposites." Polymers and Polymer Composites 29.5 ,484-496 (2021).
    [62] Rai, V. N., Mukherjee, C., & Jain, B. "Optical properties (uv-vis and ftir) of gamma irradiated polymethyl methacrylate (PMMA)." arXiv preprint arXiv:1611.02129 (2016).
    [63] Sasaki, H., Hamanaka, I., Takahashi, Y., & Kawaguchi, T. "Effect of long-term water immersion or thermal shock on mechanical properties of high-impact acrylic denture base resins." Dental Materials Journal 35.2 ,204-209 (2016).
    [64] Takahashi, Y., Hamanaka, I., & Shimizu, H. "Flexural properties of denture base resins subjected to long-term water immersion." Acta Odontologica Scandinavica 71.3-4 ,716-720 (2013).
    [65] Zafar, M. S. "Prosthodontic applications of polymethyl methacrylate (PMMA): An update." Polymers 12.10 ,2299 (2020).
    [66] Hamedi-Rad, F., Ghaffari, T., Rezaii, F., & Ramazani, A. "Effect of nanosilver on thermal and mechanical properties of acrylic base complete dentures." Journal of Dentistry (Tehran, Iran) 11.5 ,495 (2014).
    [67] Balos, S., Puskar, T., Potran, M., Milekic, B., Djurovic Koprivica, D., Laban Terzija, J., & Gusic, I. "Modulus, strength and cytotoxicity of PMMA-silica nanocomposites." Coatings 10.6 ,583 (2020).
    [68] Demir, M. M., Koynov, K., Akbey, Ü., Bubeck, C., Park, I., Lieberwirth, I., & Wegner, G. "Optical properties of composites of PMMA and surface-modified zincite nanoparticles." Macromolecules 40.4 ,1089-1100 (2007).
    [69] Hanemann, T., Boehm, J., Henzi, P., Honnef, K., Litfin, K., Ritzhaupt-Kleissl, E., & Hausselt, J. "From micro to nano: properties and potential applications of micro-and nano-filled polymer ceramic composites in microsystem technology." IEE Proceedings-Nanobiotechnology. Vol. 151. No. 4. IET Digital Library, 2004.
    [70] Lee, L. H., & Chen, W. C. "High-refractive-index thin films prepared from trialkoxysilane-capped poly (methyl methacrylate)− titania materials." Chemistry of materials 13.3 ,1137-1142 (2001).
    [71] Palvölgyi, P. S., Kokkonen, M., Sliz, R., Jantunen, H., Kordas, K., & Myllymäki, S. "Porous Low‐Loss Silica–PMMA Dielectric Nanocomposite for High‐Frequency Bullet Lens Applications." Advanced Photonics Research 4.3 ,2200208 (2023).
    [72] He, Y., Chen, Y., Zhang, L., Wong, S. W., & Chen, Z. N. "An overview of terahertz antennas." China Communications 17.7 ,124-165 (2020).
    [73] Ahmed, B., Saleem, I., Zahra, H., Khurshid, H., & Abbas, S. M. "Analytical study on effects of substrate properties on the performance of microstrip patch antenna." International Journal of Future Generation Communication and Networking 5.4 ,113-122 (2012).
    [74] Hillger, P., Grzyb, J., Jain, R., & Pfeiffer, U. R. "Terahertz imaging and sensing applications with silicon-based technologies." IEEE Transactions on Terahertz Science and Technology 9.1 ,1-19 (2018).
    [75] Laccourreye, O., & Maisonneuve, H. "French scientific medical journals confronted by developments in medical writing and the transformation of the medical press." European Annals of Otorhinolaryngology, Head and Neck Diseases 136.6 ,475-480 (2019).
    [76] Chen, N., Li, H. N., Wu, J., Li, Z., Li, L., Liu, G., & He, N. "Advances in micro milling: From tool fabrication to process outcomes." International Journal of Machine Tools and Manufacture 160 ,103670 (2021).
    [77] 日本機械学会. "Proceedings of International Conference on Leading Edge Manufacturing in 21st century: LEM21." (2003).
    [78] Chen, N., Li, H. N., Wu, J., Li, Z., Li, L., Liu, G., & He, N. "Advances in micro milling: From tool fabrication to process outcomes." International Journal of Machine Tools and Manufacture 160 ,103670 (2021).
    [79] Bertsche, E., Ehmann, K., & Malukhin, K. "Ultrasonic slot machining of a silicon carbide matrix composite." The International Journal of Advanced Manufacturing Technology 66 ,1119-1134 (2013).
    [80] Gu, M., Wu, C., Chen, X., Wan, Y., Liu, Y., Zhou, S., Li, W. "Stress-Induced Microcracking and Fracture Characterization for Ultra-High-Temperature Ceramic Matrix Composites at High Temperatures." Materials 15.20 ,7074 (2022).
    [81] Houjiang, Z., Rui, F., & Wuyi, C. "Investigation of cutting force for high speed drilling carbon fiber composite." Aeronautical Manufacturing Technology 12.283 ,76 (2006).
    [82] Wen, Q., Zhao, Y., & Gong, Y. D. "Experimental study on small hole machining of carbon fiber reinforced composites." Mach. Des. Manuf 1 ,86-89 (2018).
    [83] Geier, N., Davim, J. P., & Szalay, T. "Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review." Composites Part A: Applied Science and Manufacturing 125 ,105552 (2019).
    [84] Tawakoli, T., & Azarhoushang, B. "Intermittent grinding of ceramic matrix composites (CMCs) utilizing a developed segmented wheel." International Journal of Machine Tools and Manufacture 51.2 ,112-119 (2011).
    [85] Azarhoushang, B., & Tawakoli, T. "Development of a novel ultrasonic unit for grinding of ceramic matrix composites." The International Journal of Advanced Manufacturing Technology 57 ,945-955 (2011).
    [86] Ding, K., Fu, Y., Su, H., Chen, Y., Yu, X., & Ding, G. "Experimental studies on drilling tool load and machining quality of C/SiC composites in rotary ultrasonic machining." Journal of Materials Processing Technology 214.12 ,2900-2907 (2014).
    [87] Hashish, M., "Turning With Abrasive-Waterjets". A First Investigation. Journal of Engineering for Industry, 281-290, 1987.
    [88] Ramulu, M., Jenkins, M. G., & Guo, Z. "Abrasive water jet machining mechanisms in continuous-fiber ceramic composites." Composites Technology and Research 23.2 ,82-91 (2001).
    [89] Liu, Q., Meng, F. Z., Tian, X. L., & Tang, X. J. "Research progress of machining ceramics by abrasive water jet." Tool Eng 52.4 ,3-6 (2018).
    [90] Wang, R. G., Pan, W., Jiang, M. N., Chen, J., Luo, Y. M., & Sun, R. F. "Development in machinable ceramics and machining technology of engineering ceramics." Bull. Chin. Ceram. Soc 20.3 ,27-35 (2001).
    [91] Liu, Y., Wang, C., Li, W., Zhang, L., Yang, X., Cheng, G., & Zhang, Q. "Effect of energy density and feeding speed on micro-hole drilling in C/SiC composites by picosecond laser." Journal of Materials Processing Technology 214.12 ,3131-3140 (2014).
    [92] Zhang, R., Li, W., Liu, Y., Wang, C., Wang, J., Yang, X., & Cheng, L. "Machining parameter optimization of C/SiC composites using high power picosecond laser." Applied Surface Science 330 ,321-331 (2015).
    [93] Du, J., Zhang, H., Geng, Y., Ming, W., He, W., Ma, J., Liu, K. "A review on machining of carbon fiber reinforced ceramic matrix composites." Ceramics International 45.15 ,18155-18166 (2019).
    [94] Ramesh, S., Leen, K. H., Kumutha, K., & Arof, A. K. "FTIR studies of PVC/PMMA blend based polymer electrolytes." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 66.4-5 ,1237-1242 (2007).
    [95] Rajendran, S., & Uma, T. "Lithium ion conduction in PVC–LiBF4 electrolytes gelled with PMMA." Journal of power sources 88.2 ,282-285 (2000).
    [96] Kong, L., Yin, X., Li, Q., Ye, F., Liu, Y., Duo, G., & Yuan, X. "High‐Temperature Electromagnetic Wave Absorption Properties of ZnO/ZrSiO 4 Composite Ceramics." Journal of the American Ceramic Society 96.7 ,2211-2217 (2013).
    [97] Han, S., Cong, L., Srivastava, Y. K., Qiang, B., Rybin, M. V., Kumar, A., & Singh, R. "All‐dielectric active terahertz photonics driven by bound states in the continuum." Advanced Materials 31.37 ,1901921 (2019).
    [98] Wang, P., He, F., Liu, J., Shu, F., Fang, B., Lang, T., & Hong, Z. "Ultra-high-Q resonances in terahertz all-silicon metasurfaces based on bound states in the continuum." Photonics Research 10.12 ,2743-2750 (2022).
    [99] Yang, S., Hong, C., Jiang, Y., & Ndukaife, J. C. "Nanoparticle trapping in a quasi-BIC system." ACS Photonics 8.7 ,1961-1971 (2021).
    [100]Tooley, M. H., & TOOLEY, M. "Electronic circuits: Fundamentals and applications. Newnes.": 77-78, (2006).

    下載圖示
    QR CODE