研究生: |
蔡美玲 Tsai, Mei-Ling |
---|---|
論文名稱: |
鋼鐵業財務危機預警之剖析 Exploring Financial Distress Prediction of Steel Industry |
指導教授: |
陳慧玲
Chen, Huei-Ling |
學位類別: |
碩士 Master |
系所名稱: |
高階經理人企業管理碩士在職專班(EMBA) Executive Master of Business Administration |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 鋼鐵業 、財務危機模式 、景氣循環 |
英文關鍵詞: | Steel industry, financial distress prediction model, economic cycle |
DOI URL: | https://doi.org/10.6345/NTNU202204734 |
論文種類: | 學術論文 |
相關次數: | 點閱:187 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來受到中國鋼鐵業生產技術漸趨成熟及削價增加出口之影響,台灣鋼鐵業之技術或價格競爭優勢逐漸降低。此外,由於過度生產致鋼價下跌,使鋼鐵市場低迷。而全球經濟成長趨緩,亦不利產品售價提升。因此,台灣鋼鐵業之獲利下降及經營風險增加,使銀行對鋼鐵業授信風險提高。
本研究依據鋼鐵業行業特性選取財務結構、償債能力、經營能力、獲利能力及現金流量等構面之財務比率,建構鋼鐵業財務危機預警模式,以辨別財務危機高的公司。此外,本研究考慮景氣循環對鋼鐵業之影響,分別以2010年(景氣佳)及2014年(景氣谷底)之財務危機公司為分析對象,進行實證研究。實證結果發現,在財務危機公司發生財務危機前三年,其流動比率、速動比率、利息保障倍數、稅前純益率及總資產週轉率等多項財務指標顯著低於正常公司。無論景氣繁榮或低迷,財務危機模式預測正確率在財務危機前一年最高,雖在財務危機前兩年及前三年預測正確率較低,但整體預測準確率均在75%。本研究亦以作者任職銀行所承做之個案驗證財務危機模式,其結果顯示模式具區別力。
In recent years, Taiwan’s iron and steel industry has gradually lost its competitive advantage in production technology and prices because of the significant growth of technology and price-cutting strategy in China’s steel industry. In addition, the steel market has been declining over the past few years as a result of the large oversupply of steel that pressured prices downwards. The global recession that hit the commodities sectors hard also contributed to the shrinking growth in steel industry. Thus, the profits of the steel industry in Taiwan decrease and operating risk increases. The credit risk increases when banks make loan to companies in steel industry.
The objective of this study is to construct a financial distress prediction model which includes financial ratios of financial structure, solvency, operating efficiency, profitability and cash flow based on the characteristics of steel industry. Furthermore, the study examines how the economic cycle affects financial distress prediction of steel industry by using year 2010 as the expansion year and 2014 as the recession year, respectively. The empirical results indicate that current ratio, quick ratio, interest coverage ratio, net income before tax, and total asset turnover rate for companies in financial crises are significantly lower than those of normal companies three years before financial distress. No matter how the economic cycle is, the prediction of the financial crisis model is the most accurate in one year before financial crisis occurs. The overall prediction rate for two years and three years before the financial crisis occurs is about 75%. This study uses one case company to verify the financial distress prediction model. The results indicate that the financial distress prediction model is useful for financial institutions to screen out the financial distress companies in steel industry.
江文勝,民103,傳統鋼鐵迎向第二春,擺脫與營建業連動,「Car」位汽車產業,先探雜誌,1785期。
江燕和,民96,建築業財務報表之剖析,國立中央大學財務金融系碩士在職專班碩士論文。
杜榮瑞、薛富井、蔡彥卿與劉啟群,民104,財務報表分析,台北市:東華書局。
林嬋娟、洪櫻芬與薛敏正,民86,財務困難公司盈餘管理實證研究,管理學報,第14卷第1期,頁15-38。
陳肇榮,民72,運用財務比率預測財務危機之實證研究,國立政治大學企業管理研究所博士論文。
張金鶚,民85,房地產投資分析及決策,台北:華泰書局。
黃振豊與呂紹強,民89年,企業財務危機預警模式之研究—以財務及非財務因素建構,當代會計,第1卷第1期,頁19-40。
董子淳,2014,鋼鐵產業黃金10年過後的第2春何在?萬寶週刊第1061期,2014/03/04,http://www.e-stock.com.tw/asp/board/v_subject.asp?ID=7197291
廖彩梅,民92,盈餘管理與財務困難預警關係之研究,東吳大學會計學系研究所碩士論文。
蔡戊鑫,民92,建構臺灣大型企業財務危機預警模式,中正大學國際經濟研究所碩士論文。
歐俊麟,民99,企業財務危機預警模式之建立,中正大學國際經濟研究所碩士論文。
薛敏正與林嬋娟,民93,盈餘管理偵測模式比較研究:以國內財務困難公司為例,中華會計學刊,第5卷第1期,頁105-130。
蔡依恬,民104,中國大陸成長轉型應進一步擴大市場化程度,國際經濟情勢雙週報,第
1836期.
瞿海源、畢恆達、劉長萱與楊國樞,民104,社會及行為科學研究法,台北市:東華書局。
Altman, E.I. 1968. Financial ratio, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance 23(4): 589-609.
Bae, J. K. 2012. Predicting financial distress of the South Korean manufacturing industries. Expert Systems with Applications 39: 9159-9165.
Beaver, W.H. 1966. Financial ratios as predictors of failure. Journal of Accounting Research 4: 71-102.
Coats, P. K. and L. F. Fant. 1993. Recognizing financial distress patterns using a neural network tool .Financial Management 22(3): 142-155.
Deakin, E.B. 1972. A discriminant analysis of predictors of business failure. Journal of Accounting Research 10(1): 167-179.
DeAngelo, H., L. DeAngelo, and D. J. Skinner. 1994. Accounting choice in troubled companies. Journal of Accounting and Economics 17(1-2): 113-143.
Jo, H. and I. Han. 1997. Bankruptcy prediction using case-based reasoning, neural networks and discriminant analysis. Expert Systems with Applications 13(2): 97-108.
Kaiser, H. F. 1960. The application of electronic computers to factor analysis. Educational and Psychological Measurement 20, 141-151.
Kaiser, H. F. 1970. A second-generation Little Jiffy. Psychometrika 35: 401-415.
Lau, A.H-L. 1987. A five–state financial distress prediction model. Journal of Accounting Research 25(1): 127-138.
Martin, D. 1977. Early warning of banking failure. Journal of Banking and Finance 1: 249-276.
Odom, M. D. and R. Sharda. 1990. A neural network model for bankruptcy predication. IEEE INNS International Joint Conference on Neural Networks 2(17-21): 163.168.
Ohlson, J. A. 1980. Financial ratios and the probability prediction of bankruptcy. Journal of Accounting Research 18(1): 109-131.
Pindado, J., L. Rodrigues andC. D. L. Torre. 2008. Estimating financial distress likelihood. Journal of Business Research 61(9):995-1003.
Whitaker, R. B. 1999. The early stages of financial distress. Journal of Economics and Finance 23(2):123-133.