研究生: |
林書筠 Lin, Shu-Yun |
---|---|
論文名稱: |
配位錯合物之光學與電學性質應用於化學感測器之研究 Optical and Electrical Properties of Coordination Complexes Applied to Chemical Sensors |
指導教授: |
呂家榮
Lu, Chia-Jung |
口試委員: |
宋蕙伶
Sung, Hui-Ling 劉茂煌 Liu, Mao-Huang 呂家榮 Lu, Chia-Jung |
口試日期: | 2023/06/27 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 配位錯合物 、離子偵測器 、單層奈米碳管 、氣體感測器 |
英文關鍵詞: | Coordination complexes, ion detector, SWCNT, gas sensor |
DOI URL: | http://doi.org/10.6345/NTNU202301053 |
論文種類: | 學術論文 |
相關次數: | 點閱:95 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討自製與市售的配位錯合物的光學與電學性質。在室溫中將2,4,6-tris(phosphorylmethyl)mesitylene或1,2,4,5-tetrakis(phosphorylmethyl)benzene、1,10-phenanthroline與六水合氯酸鎘經擴散法得到CdP3與CdP4。由於前驅物與錯合物都具有螢光,故將CdP3與CdP4加入有選擇性的鋅離子,以不同濃度去偵測螢光強度。
Ru(ddp)本身具有螢光,故常作為螢光偵測器。為了實現在螢光儀中觀察固體錯合物測定有機氣體時所發生的變化,因此將Ru(ddp)混和PDMS做成薄膜,以頂空法抽取飽和氣體,觀察螢光光譜的差異。接著再以實驗室自組的螢光感測器搭配氣體生成系統去測定有機氣體。
最後將單層奈米碳管與Ru(ddp)混和滴在碳電極上,利用氣體生成系統共測定10種有機氣體,觀察到奈米碳管通入butanol時反應最好,在112 ppm有0.152%的響應值 (Response),則奈米碳管@ Ru(ddp)對octane具有高度的反應,在706 ppm有1.94%響應值。值得注意的是,有混和Ru(ddp)的奈米碳管對所有的有機氣體之Response比奈米碳管佳,所以Ru(ddp)能增加奈米碳管的靈敏度。
This study mainly investigates the optical and electrical properties of self-made and commercially available coordination complexes. CdP3 and CdP4 were obtained by diffusing 2,4,6-tris(phosphorylmethyl)mesitylene or 1,2,4,5-tetrakis(phosphorylmethyl)benzene, 1,10-phenanthroline, hexahydrate and cadmium chlorate at room temperature. Since both the precursor and the complex have fluorescent, CdP3 and CdP4 are added with selective zinc ions to detect the fluorescence intensity at different concentrations.
Ru(ddp) itself is fluorescent, so it is often used as a fluorescent detector. In order to observe the changes that occur when solid complexes are measured in a fluorometer and determine organic gases, Ru(ddp) mixed with PDMS to make a thin film, the saturated gas was extracted by the headspace method to observe the difference in the fluorescence spectrum. Then, the laboratory self-assembled fluorescent sensor and gas generation system were used to measure organic gases.
Finally, the single-layer carbon nanotubes were mixed with Ru(ddp) and dropped on the carbon electrode, and a total of 10 kinds of organic gases were measured by the gas generation system. It is observed that carbon nanotubes have the best response when they are fed into butanol, and there is a response value of 0.152% at 112 ppm, and then carbon nanotubes @ Ru(ddp) have a high degree of response to octane, with 1.94% at 706 ppm. It is worth noting that carbon nanotubes mixed with Ru(ddp) have a better response to all organic gases than carbon nanotubes, so Ru(ddp) can increase the sensitivity of carbon nanotubes.
Byrne, R.; Benito-Lopez, F.; Diamond, D. Materials science and the sensor revolution. Materials Today 2010, 13 (7-8), 16-23.
White, R. M. A sensor classification scheme. IEEE Transactions on ultrasonics, ferroelectrics, and frequency control 1987, 34 (2), 124-126.
Culshaw, B.; Kersey, A. Fiber-optic sensing: A historical perspective. Journal of Lightwave Technology 2008, 26 (9), 1064-1078.
Achatz, D. E.; Ali, R.; Wolfbeis, O. S. Luminescent chemical sensing, biosensing, and screening using upconverting nanoparticles. Luminescence Applied In Sensor Science 2011, 29-50
Fog, A.; Buck, R. P. Electronic semiconducting oxides as pH sensors. Sensors and Actuators 1984, 5 (2), 137-146.
Nguyen, N.-T.; Lassemono, S.; Chollet, F. A.; Yang, C. Microfluidic sensor for dynamic surface tension measurement. In IEE Proceedings-Nanobiotechnology 2006, 153, 102-106.
Boroujerdi, R.; Abdelkader, A.; Paul, R. State of the art in alcohol sensing with 2D materials. Nano-Micro Letters 2020, 12, 1-33.
Chung, D. A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing. Journal of Materials Science 2020, 55 (32), 15367-15396.
Fleming, A. J. A review of nanometer resolution position sensors: Operation and performance. Sensors and Actuators A: Physical 2013, 190, 106-126.
Hulanicki, A.; Glab, S.; Ingman, F. Chemical sensors: definitions and classification. Pure and Applied Chemistry 1991, 63 (9), 1247-1250.
Rodríguez-Reyes, J.; Silva-Quiñones, D. Metalorganic functionalization in vacuum 2018, 11
Comba, P. Strains and stresses in coordination compounds. Coordination Chemistry Reviews 1999, 182 (1), 343-371.
Ciofini, I.; Daul, C. A. DFT calculations of molecular magnetic properties of coordination compounds. Coordination Chemistry reviews 2003, 238, 187-209.
Harris, D. C.; Bertolucci, M. D. Symmetry and spectroscopy: an introduction to vibrational and electronic spectroscopy; Courier Corporation, 1989, Chapter 215. Cotton, S. Lanthanide and actinide chemistry; John Wiley & Sons, 2013, Chapter 4.
Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry; John Wiley and Sons, Inc., 1999.
Reddy, M.; Bejoymohandas, K.; Divya, V. Luminescent lanthanide coordination compounds as potential mitochondria-targeting probes: Molecular engineering to bioimaging. Dyes and Pigments 2022, 205, 110528.
Balzani, V.; Bergamini, G.; Ceroni, P. From the photochemistry of coordination compounds to light-powered nanoscale devices and machines. Coordination Chemistry Reviews 2008, 252 (23-24), 2456-2469.
Pawlus, K.; Jarosz, T. Transition metal coordination compounds as novel materials for dye-sensitized solar cells. Applied Sciences 2022, 12 (7), 3442
Tsuji, J. Recollections of organopalladium chemistry. Pure and Applied Chemistry 1999, 71 (8), 1539-1547.
Ponnuswamy, T.; Chyan, O. Detection of Ni2+ by a dimethylglyoxime probe using attenuated total-reflection infrared spectroscopy. Analytical Sciences 2002, 18 (4), 449-453.
Loehrer, P. J.; EINHORN, L. H. Cisplatin. Annals of Internal Medicine 1984, 100 (5), 704-713
Tong, M.-L.; Chen, X.-M. Synthesis of coordination compounds and coordination polymers. In Modern Inorganics Synthetic Chemistr, 2017, 189-217.
Seoane, B.; Castellanos, S.; Dikhtiarenko, A.; Kapteijn, F.; Gascon, J. Multi-scale crystal engineering of metal organic frameworks. Coordination Chemistry Reviews 2016, 307, 147-187.
Robin, A. Y.; Fromm, K. M. Coordination polymer networks with O-and N-donors: What they are, why and how they are made. Coordination Chemistry Reviews 2006, 250 (15-16), 2127-2157.
Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Introduction to metal–organic frameworks. ACS publications: 2012, 112, 673-674.
Karimi, M.; Mehrabadi, Z.; Farsadrooh, M.; Bafkary, R.; Derikvandi, H.; Hayati, P.; Mohammadi, K. Metal–organic framework. In Interface Science and Technolog y 2021, 33, 279-387.
Ramesh, M.; Deepa, C. Metal-organic frameworks and their composites. In Metal-Organic Frameworks for Chemical Reactions, 2021, 1-18.
Valeur, B.; Berberan-Santos, M. N. Molecular fluorescence: Principles and Applications; John Wiley & Sons, 2012, 21-23
McGOWN, L. B.; Nithipatikom, K. Molecular Fluorescence and Phosphorescence. 2000, 353-393
Valeur, B.; Berberan-Santos, M. N. A brief history of fluorescence and phosphorescence before the emergence of quantum theory. Journal of Chemical Education 2011, 88 (6), 731-738.
Dong, J.; Zhao, D.; Lu, Y.; Sun, W.-Y. Photoluminescent metal–organic frameworks and their application for sensing biomolecules. Journal of Materials Chemistry A 2019, 7 (40), 22744-22767.
Allendorf, M. D.; Bauer, C. A.; Bhakta, R.; Houk, R. Luminescent metal–organic frameworks. Chemical Society Reviews 2009, 38 (5), 1330-1352.
Yuan, C.; Liu, B.; Liu, F.; Han, M.-Y.; Zhang, Z. Fluorescence “turn on” detection of mercuric ion based on bis (dithiocarbamato) copper (II) complex functionalized carbon nanodots. Analytical Chemistry 2014, 86 (2), 1123-1130.
Hu, Z.-J.; Tsai, M.-J.; Sung, H.-L.; Wu, J.-Y. A three-component copper phosphonate complex as a sensor platform for sensitive Cd2+ and Zn2+ ion detection in water via fluorescence enhancement. Journal of Solid State Chemistry 2021, 299, 122178.
Rubin, H. N.; Reynolds, M. M. Amino-incorporated tricarboxylate metal–organic framework for the sensitive fluorescence detection of heavy metal ions with insights into the origin of photoluminescence response. Inorganic Chemistry 2019, 58 (16), 10671-10679.
OECD. Single walled carbon nanotubes (SWCNTs): Summary of the dossier, Series on the safety of manufactured nanomaterials No. 70. 2016.
Bernholc, J.; Brenner, D.; Buongiorno Nardelli, M.; Meunier, V.; Roland, C. Mechanical and electrical properties of nanotubes. Annual Review of Materials Research 2002, 32 (1), 347-375.
Bandaru, P. R. Electrical properties and applications of carbon nanotube structures. Journal of Nanoscience and Nanotechnology 2007, 7 (4-5), 1239-1267.
Marina F. What are multi walled carbon nanotubes? MWCNT production, properties, and applications.TUBALL, 2021
Li, J.; Lu, Y.; Ye, Q.; Cinke, M.; Han, J.; Meyyappan, M. Carbon nanotube sensors for gas and organic vapor detection. Nano Letters 2003, 3 (7), 929-933.
Sayago, I.; Terrado, E.; Lafuente, E.; Horrillo, M.; Maser, W. K.; Benito, A. M.; Navarro, R.; Urriolabeitia, E. P.; Martinez, M.; Gutierrez, J. Hydrogen sensors based on carbon nanotubes thin films. Synthetic Metals 2005, 148 (1), 15-19.
Kwon, Y. J.; Na, H. G.; Kang, S. Y.; Choi, S.-W.; Kim, S. S.; Kim, H. W. Selective detection of low concentration toluene gas using Pt-decorated carbon nanotubes sensors. Sensors and Actuators B: Chemical 2016, 227, 157-168.
南京帕爾斯生物化學有限公司, https://www.pariselements.com
Singer, E.; Duveneck, G.; Ehrat, M.; Widmer, H. Fiber optic sensor for oxygen determination in liquids. Sensors and Actuators A: physical 1994, 42 (1-3), 542-546.
Bolink, H. J.; Cappelli, L.; Coronado, E.; Grätzel, M.; Nazeeruddin, M. K. Efficient and stable solid-state light-emitting electrochemical cell using tris (4, 7-diphenyl-1, 10-phenanthroline) ruthenium (II) hexafluorophosphate. Journal of the American Chemical Society 2006, 128 (1), 46-47.
Schreml, S.; Meier, R. J.; Weiß, K. T.; Cattani, J.; Flittner, D.; Gehmert, S.; Wolfbeis, O. S.; Landthaler, M.; Babilas, P. A s prayable luminescent pH sensor and its use for wound imaging in vivo. Experimental Dermatology 2012, 21 (12), 951-953.
Sung, H.-L.; Weng, W.-P.; Lin, S.-F.; Yang, H.-C.; Wu, J.-Y. Temperature-influenced M2L and M2L2 molecular metal phosphonates and diversity of ligand conformation. Inorganica Chimica Acta 2021, 514, 119998.
Sung, H. L.; Her, T. M.; Hu, Z. J.; Lee, C. H. Synthesis and Characterization of Copper (II)–Phosphonate Coordination Chain Array of Metallocages. Journal of the Chinese Chemical Society 2016, 63 (12), 1000-1006.
高麗婷. 表面修飾不同形貌奈米銀應用於表面電漿共振有機氣體感測器之研究. 國立臺灣師範大學, 碩士論文, 2019
Karim, M. R.; Alam, M.; Aijaz, M.; Asiri, A. M.; Dar, M.; Rahman, M. M. Fabrication of 1, 4-dioxane sensor based on microwave assisted PAni-SiO2 nanocomposites. Talanta 2019, 193, 64-69.
Mahdavian, L.; Monajjemi, M.; Mangkorntong, N. Sensor response to alcohol and chemical mechanism of carbon nanotube gas sensors. Fullerenes, Nanotubes and Carbon Nanostructures 2009, 17 (5), 484-495.
Medina, E.; Pinter, B. A DFT Study on the Redox Active Behavior of Carbene and Pyridine Ligands in the Oxidative and Reductive Quenching Cycles of Ruthenium Photoredox Catalysts. Catalysts 2020, 10 (1).