簡易檢索 / 詳目顯示

研究生: 王思宜
Shi-Yi Wang
論文名稱: 西式划船腳蹬板角度對拉槳階段之影響
The Effects of Foot-Stretcher Angle on The Drive Phase in Rowing
指導教授: 黃長福
Huang, Chen-Fu
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 82
中文關鍵詞: 西式划船腳蹬板角度划船測功儀
英文關鍵詞: rowing, foot-stretcher angle, rowing ergometer
論文種類: 學術論文
相關次數: 點閱:160下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在一場2000公尺划船競賽中,每位划船選手需重複划槳220–250次以完成比賽,且每次拉槳又需藉由腿部推蹬來啟動並產生力量,因而在此高反覆次數累積下,腿部推蹬效率將對划船表現有所影響。本研究目的在探討使用不同腳蹬板角度(39°、42°、45°與48°)對西式划船選手進行一分鐘划船測驗時其各項力學參數之影響,並藉以評估適合的腳蹬板角度。
    研究中以十二名優秀大專女子划船選手為受試對象(21.3 ± 1.7歲、164.5 ± 4.1公分與58.0 ± 4.9公斤),各受試者皆須在Concept II 划船測功儀上完成四種不同腳蹬板角度之一分鐘划船測驗。以JVC數位攝影機 (60 Hz) 拍攝二度空間矢狀面划船動作,並利用Biovision拉力計 (600 Hz) 與Kistler測力板 (600 Hz) 同步擷取拉槳階段過程中之拉力值與腿部推蹬之反作用力。以單因子重覆量數變異數分析來檢定四種腳蹬板角度下各力學參數之差異顯著性,統計顯著水準定為α= .05。
    本研究主要結論為:一、改變腳蹬板角度,的確會對拉槳階段過程中踝關節動作有所影響;隨著腳蹬板角度增加,踝關節不論在最大彎曲、最大伸展角度與關節活動範圍上皆明顯減小。二、在39° 腳蹬板角度下,可產生較大每槳平均功率與拉槳階段平均功率,顯示其整體划船效率與拉槳階段效率為最高;因此在腳蹬板角度的選擇上,本研究建議以39° 腳蹬板角度為優先考量。

    Each rower required performing 220 to 250 strokes during a 2000 meters competition rowing. Due to these high-repeated strokes, the efficient of the leg drive will influence the rowing performance. Therefore, the purpose of this study was to investigate the effect of foot-stretcher angle (39°, 42°, 45° and 48°) on the drive phase in rowing.
    Twelve elite female rowers participated in this study (21.3 ± 1.7 years, 164.5 ± 4.1 cm and 58.0 ± 4.9 kg), and each subject was asked to perform 1-min test under four foot-stretcher angles on Concept II rowing ergometer. One JVC digital camera (60 Hz) was used to recorded sagittal plane kinematics during rowing, and Biovision load cell (600 Hz) were synchronized with Kistler force plate (600 Hz) to collect the pulling force and foot-stretcher reaction force. The selected variables were tested by one-way repeated ANOVA. Statistical significance was set at α = .05.
    The result indicated that when increase the foot-stretcher angle, the maximum and minimum angle of the ankle and ankle’s range of motion were decrease. It was concluded that the rower could produce a higher mean power per stroke and mean power per drive stroke in 39° foot-stretcher. In addition, when adjusting the foot-stretcher angle, the motion of ankle joint was changed. It was suggested that the rower could choose 39° foot-stretcher in training and competition.

    口試委員與系主任簽字證書---------------------------------- I 授權書----------------------------------------------------II 中文摘要-------------------------------------------------III 英文摘要--------------------------------------------------IV 謝誌-------------------------------------------------------V 目次------------------------------------------------------VI 表次------------------------------------------------------IX 圖次-------------------------------------------------------X 第壹章、緒 論 第一節、前言-----------------------------------------------1 第二節、問題背景-------------------------------------------2 第三節、研究目的-------------------------------------------5 第四節、研究範圍-------------------------------------------6 第五節、研究限制-------------------------------------------7 第六節、名詞解釋與操作性定義-------------------------------8 第貳章、文獻探討 第一節、划船拉槳動作的研究--------------------------------10 第二節、拉槳力量之研究------------------------------------12 第三節、腿部推蹬力量與下肢肌力之研究----------------------15 第四節、腳蹬板角度的調整----------------------------------17 第五節、文獻總結------------------------------------------20 第參章、研究方法與步驟 第一節、研究對象------------------------------------------21 第二節、實驗時間與地點------------------------------------22 第三節、儀器場地的配置------------------------------------23 第四節、實驗設計------------------------------------------27 第五節、實驗流程------------------------------------------28 第六節、資料蒐集與處理------------------------------------29 第七節、預備實驗------------------------------------------37 第八節、統計分析------------------------------------------44 第肆章、結果 第一節、運動學結果----------------------------------------45 第二節、動力學結果----------------------------------------47 第伍章、討論與建議 第一節、改變腳蹬板角度對划船表現的影響--------------------53 第二節、結論----------------------------------------------59 第三節、建議--------------------------------------------- 59 引用文獻 一、中文部分----------------------------------------------60 二、英文部分----------------------------------------------61 附錄一 受試者須知與參與同意書----------------------------67 附錄二 受試者詳細資料表----------------------------------68 附錄三 變異數分析摘要表--------------------------------- 69 附錄四 各受試者實驗所得之各項力學參數--------------------74 表 次 表一 受試者基本資料------------------------------------22 表二 三位受試者手部拉槳的功----------------------------41 表三 三位受試者每槳平均功率----------------------------41 表四 拉槳階段踝關節之最大彎曲角度----------------------42 表五 拉槳階段踝關節之最大伸展角度----------------------42 表六 拉槳階段膝關節之最大彎曲角度----------------------43 表七 拉槳階段膝關節之最大伸展角度----------------------43 表八 拉槳階段髖關節之最大彎曲角度----------------------43 表九 拉槳階段髖關節之最大伸展角度----------------------43 表十 不同腳蹬板角度之划船週期時間----------------------45 表十一 拉槳階段下肢踝關節、膝關節與髖關節角度之變化情形--46 表十二 不同腳蹬板角度之每槳平均功率與拉槳階段平均功率----50 表十三 不同腳蹬板角度之拉槳力量參數與力量峰值出現之時宜--50 表十四 不同腳蹬板角度之推蹬平均功率與推蹬平均水平力量----52 表十五 腳蹬板前後與垂直反作用力轉換在水平方向之平均水平力量-- 52 表十六 推蹬舒適度與施力難易度所佔人數之比例--------------57 表十七 各力學參數其平均數最大值之角度--------------------58 圖 次 圖1-1 船體剖面圖----------------------------------------2 圖1-2 拉槳階段的開始與結束------------------------------8 圖1-3 下肢髖關節、膝關節與踝關節角度--------------------9 圖2-1 划船週期性動作------------------------------------10 圖2-2 划船者受力之自由體圖------------------------------12 圖2-3 雙人單槳示意圖------------------------------------15 圖2-4 腳蹬板高度----------------------------------------17 圖2-5 雙腳敞開角度--------------------------------------17 圖3-1 Biovision 拉力計----------------------------------23 圖3-2 傾斜之腳蹬板--------------------------------------24 圖3-3 測力板上之裝置------------------------------------24 圖3-4 實驗的場地佈置------------------------------------26 圖3-5 實驗的場地佈置------------------------------------26 圖3-6 腿部推蹬力量之分解--------------------------------31 圖3-7 資料處理之流程------------------------------------36 圖3-8 拉槳力量之分解------------------------------------37 圖3-9 拉槳階段握把之水平速度、垂直速度與拉槳力量--------38 圖3-10 2號受試者與9號受試者從第6槳至第40槳手部拉槳的功與每槳平均功率------------------------------------------------40 圖4-1 2號受試者在39° 與48° 角度下之踝、膝與髖關節角度---46 圖4-2 2號受試者在不同腳蹬板角度下之踝關節角度、拉槳力量與腳蹬板反作用力曲線----------------------------------------48 圖4-3 2號受試者在39° 與48° 腳蹬板角度下之握把水平速度、拉槳力量與拉槳瞬時功率--------------------------------------49 圖4-4 6號受試者在39° 與48° 腳蹬板角度下之推蹬力量、滑座水平速度與推蹬瞬時功率--------------------------------------51

    一、中文部分
    王思宜、吳家慶、黃長福(2004)。優秀女子划船選手划船動作之生物力學分析。體育學報,36,61-72。
    林惠美、許瓊云、黃欣惠(2003)。我國優秀女子划船選手下肢爆發力之動力學分析。九十二年全國大專院校運動會體育學術研討會論文集(頁448-454)。台中市:國立台灣體育學院。
    吳政穎(2002)。以傅力葉級數建立陸上划船器之划船技術等級判定研究。未出版碩士論文,國立台灣師範大學體育研究所,台北市。
    柯州(2001)。西式划船選手划槳動作不同手腳配合運動分析。未出版碩士論文,國立台灣師範大學體育研究所,台北市。
    蔡慶彬(1997)。划船拉槳動作之動力學分析。未出版碩士論文,國立體育學院教練研究所,桃園縣。
    二、英文部分
    Asami, T., Adachi, N., Yamamoto, K., Ikuta, K., & Takahashi, K. (1978). Biomechanical analysis of rowing skill. In E. Asmussen & K. Jorgensen (Eds.), Biomechanics VI-B (pp. 109-114). Champaign, IL: Human Kinetics.
    Asami, T., Yamamoto, K., Matsuo, A., & Fukunaga, T. (1985). Some biomechanical factors of rowing performance. In D. A. Winter, R. W. Norman, R. P. Wells, K. C. Hayes, & A. E. Patla (Eds.), Biomechanics IX-B (pp. 477-480). Champaign, IL: Human Kinetics.
    Baudouin, A., & Hawkins, D. (2002). A biomechanical review of factors affecting rowing performance. British Journal of Sports and Medicine, 36, 396-402.
    Boyne, D. J. (2000). Essential sculling. New York: Lyons.
    Clarkson, P. M., Graves, J., & Melchionda, A. M. (1984). Isokinetic strength and endurance and muscle fiber type of elite oarswomen. Canadian Journal of Applied Sport Science, 9, 127-132.
    Clifford, P. S., Hanel, B., & Secher, N. H. (1994). Arterial blood pressure response to rowing. Medicine and Science in Sports and Exercise, 26(6), 715-719.
    Colloud, F., Champely, S., Bahuaud, P., & Cheze, L. (2002). Kinematics symmetry in rowing: comparison of fixed stretcher versus free-floating ergometer. In K. E. Gianikellis (Ed.), Proceedings of XXth International Symposium on Biomechanics in Sports (pp. 275-278). Spain: Universidad de Extremadura.
    FISA The International Rowing Federation. (2002). Be a coach. Handbook-level 1.
    Fritsch, W. (2000). Rowing: training-fitness-leisure. Oxford: Meyer & Meyer Sport.
    Green, H. J. (1986). Muscle power: fiber type recruitment, metabolism and fatigue. In N. L. Jones, N. McCartney, & A. J. McComas (Eds.), Human muscle power (pp. 65-80). Champaign, IL: Human Kinetics.
    Hagerman, F. C. (1984). Applied physiology of rowing. Sports Medicine, 1, 303-326.
    Hagerman, F. C., Addington, W. W., & Gaensler, E. A. (1972). A comparison of selected physiological variables among outstanding competitive oarsmen. Journal of Sports Medicine and Physical Fitness, 12, 12-22.
    Hagerman, F. C., Connors, M. C., Gault, J. A., Hagerman, G. R., & Polinski, W. J. (1978). Energy expenditure during simulated rowing. Journal of Applied Physiology, 45(1), 87-93.
    Hagerman, F. C., & Staron, R. S. (1983). Seasonal variations among physiological variables in elite oarsmen. Canadian Journal of Applied Sport Science, 8, 143-148.
    Hanel, B., Gustafsson, F., Larsen, H. H., & Secher, N. H. (1993). Influence of exercise intensity and duration on post-exercise pulmonary diffusion capacity. International Journal of Sports Medicine, 14, S11-S14.
    Hartmann, U., Mader, A., Wasser, K., & Klauer, I. (1993). Peak force, velocity, and power during five and ten maximal rowing ergometer strokes by world class female and male rowers. International Journal of Sports Medicine, 14, S42-S45.
    Hawkins, D. (2000). A new instrumentation system for training rowers. Journal of Biomechanics, 33, 241-245.
    Henneman, E., Somjen, G., & Carpenter, D. O. (1965). Functional significance of cell size in spinal motoneurons. Journal of Neurophysiology, 28, 560-580.
    Herberger, E., Beyer, G., Harre, D., Kruger, H. O., Querg, H., & Sieler, G. (2003). Rowing (4th ed.). (P. Klavora, Trans.). Toronto: Sport Books. (Original work published 1977).
    Hume, P., Soper, C., Joe, G., Williams, T., Aitchson, D., & Gunn, S. (2000). Effects of foot-stretcher angle on the drive phase in ergometer rowing [abstract]. Book of Abstracts (p. 197). Brisbane, Australia: 2000 Pre-Olympic Congress.
    International Olympic Committee. (2003). Rowing: history. From http://www.olympic.org/uk/sports/programme/history_uk.asp?DiscCode=RO&sportCord=RO
    Ishiko, T. (1971). Biomechanics of rowing. In J. Vredenbregt & J. Wartenweiler (Eds.), Biomechanics II (pp. 249-252). Basel.
    Ishiko, T., Katamoto, S., & Maeshima, T. (1982). Analysis of rowing movements with radiotelemetry. In H. Matsui & K. Kobayashi (Eds.), Biomechanics VIII-B (pp. 816-821). Champaign, IL: Human Kinetics.
    Jackson, R. (1982). Physiology of rowing training and competition. In P. Klavora (Ed.), Rowig 3, National coaching certification program, level 3, Canadian Amateur Rowing Association (pp. 304-334). Ottawa.
    Jensen, R. L., Freedson, P. S., & Hamill, J. (1996). The prediction of power and efficiency during near-maximal rowing. European Journal of Applied Physiology, 73, 98-104.
    Jurimae, J. & Jurimae, T. (2001). Responses of blood hormones to the maximal rowing ergometer test in college rowers. Journal of Sports Medicine and Physical Fitness, 41, 73-77.
    Kleshnev, V. (2000). Power in rowing. In Y. Hong & D. P. Johns (Eds.), Proceedings of XVIII International Symposium on Biomechanics in Sports (pp. 662-666). Hong Kong: The Chinese University of Hong Kong.
    Kramer, J. F., & Leger, A. (1991). Oarside and nonoarside torques of the knee extensors and flexors in light-weight and heavy-weight sweep oarsmen. Physiotherapy Canada, 43(3), 23-27.
    Kramer, J. F., Leger, A., & Morrow, A. (1991). Oarside and nonoarside knee extensor strength measures and their relationship to rowing ergometer performance. Journal Orthopaedic of Sports Physical Therapy, 14(5), 213-219.
    Kyrolainen, H., & Smith, R. (1999). Mechanical power output and muscle activities during maximal rowing with different stroke rates. Journal of Human Movement Studies, 36, 75-94.
    Lakomy, H. K. A., & Lakomy, J. (1993). Estimation of maximum oxygen uptake from submaximal exercise on a Concept II rowing ergometer. Journal of Sports Sciences, 11, 227-232.
    Lamb, D. H. (1989). A kinematic comparison of ergometer and on-water rowing. American Journal of Sports Medicine, 17(3), 367-373.
    Macfarlanae, D. J., Edmond, I. M., & Walmsley, A. (1997). Instrumentation of an ergometer to monitor the reliability of rowing performance. Journal of Sports Sciences, 15, 167-173.
    Mahler, D. A., Andrea, B. E., & Andresen, D. C. (1984). Comparison of 6-min “all-out” and incremental exercise tests in elite oarsmen. Medicine and Science in Sports and Exercise, 16(6), 567-571.
    Marr, A., & Stafford, P. A. (1983). A kinematic and electromyographical comparison of a junior and a novice rower. Pelops, 4, 1-6.
    Martin, T. P., & Bernfield, J. S. (1980). Effect of stroke rate on velocity of a rowing shell. Medicine and Science in Sports and Exercise, 12(4), 250-256.
    McArthur, J. (2001). High performance rowing. Marlborough: Crowood.
    McBride, M. E., Sanderson, D. J., & Elliott, B. C. (2001). Seat specific technique in pair oared rowing. In J. R. Blackwell (Ed.), Proceedings of XIX International Symposium on Biomechanics in Sports (pp. 263-266). United State: University of San Francisco.
    Nelson, W. N., & Widule, C. J. (1983). Kinematic analysis and efficiency estimate of intercollegiate female rowers. Medicine and Science in Sports and Exercise, 15(6), 535-541.
    Norkin, C. C., & White, D. J. (2003). Measurement of joint motion: a guide to goniometry (3rd ed.). Philadelphia: F. A. Davis.
    Owen, K., Whyte, G., Ingham, S. A., & Waygood, C. (2002). Maximal force and power output of elite heavyweight and lightweight male rowers. Journal of Sports Sciences, 20(1), 14.
    Paduda, J. (1992). The art of sculling. United States: Ragged Mountain.
    Parkin, S., Nowicky, A. V., Rutherford, O. M., & McGregor, A. H. (2001). Do oarsmen have asymmetries in the strength of their back and leg muscles? Journal of Sports Sciences, 19, 521-526.
    Peltonen, U., & Rusko, H. (1993). Interrelations between power, force production and energy metabolism in maximal leg work using a modified rowing ergometer. Journal of Sports Sciences, 11, 233-240.
    Pudlo, P., Barbier, F., & Angue, J. C. (1996). Kinematic and dynamic analysis of the rower’s gesture on Concept II ergometer. Proceedings of XIV International Symposium on Biomechanics in Sports (pp. 317-320). Funchal, Madeira, Portugal.
    Purcer, M. (1987). Rigging (2nd ed.). Ontario: Regatta Sport.
    Rodriguez, R. J., Rodriguez, R. P., Cook, S. D., & Sandborn, P. M. (1990). Electromyographic analysis of rowing stroke biomechanics. Journal of Sports Medicine and Physical Fitness, 30(1), 103-108.
    Schabort, E. J., Hawley, J. A., Hopkins, W., & Blum, H. (1999). High reliability of performance of well-trained rowers on a rowing ergometer. Journal of Sports Sciences, 17(8), 627-632.
    Secher, N. H. (1983). The physiology of rowing. Journal of Sports Sciences, 1, 23-53.
    Secher, N. H. (1993). Physiological and biomechanical aspects of rowing. Sports Medicine, 15(1), 24-42.
    Secher, N. H. (2000). Rowing. In R. J. Shephard & P. O. Astrand (Eds.), Endurance in Sports (pp. 836-843). Oxford: Blackwell Science.
    Smith, R., & Draper, C. (2002). Quantitative characteristics of coxless pair-oar rowing. In K. E. Gianikellis (Ed.), Proceedings of XXth International Symposium on Biomechanics in Sports (pp. 263-266). Spain: Universidad de Extremadura.
    Smith, R., Galloway, M., Potton, R., & Spinks, W. (1993). Ergometer based prediction of on-water rowing performance. Sports Coach, 16(2), 24-26.
    Torres-Moreno, R., Tanaka, C., & Penney, K. L. (2000). Joint excursion, handle velocity, and applied force: a biomechanical analysis of ergonometric rowing. International Journal of Sports Medicine, 21, 41-44.
    Yoshiga, C. C., & Higuchi, M. (2003). Bilateral leg extension power and fat-free mass in young oarsmen. Journal of Sports Sciences, 21, 905-909.

    QR CODE