研究生: |
朱冠宇 Chu, Guan-Yu |
---|---|
論文名稱: |
鐵電效應於負電容電晶體與1T記憶體應用 Negative Capacitance Field-Effect Transistor and 1T Memory with Ferroelectric Effect |
指導教授: |
李敏鴻
Lee, Min-Hung |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | HfO2:Zr 、鐵電負電容電晶體 、低次臨界擺幅 、1T記憶體 |
英文關鍵詞: | HfO2:Zr, NC-FeFET, steep subthreshold swing, 1T Memory |
論文種類: | 學術論文 |
相關次數: | 點閱:208 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
德國T. S. Böscke團隊在IEDM 2011發表的論文中提到,長久下來,在具有快速操作、低耗電及非揮發性記憶體技術中,鐵電場效應電晶體(FeFET)有著顯著的地位。
MOSFET的SS在常溫下根據Boltzmann tyranny其物理極限為2.3kbT/decade。為突破此極限則需改變SS公式中body factor,其中Cins可藉由絕緣層材料的選擇達成負電容,室溫之SS< 60mV/dec。
在FeRAM中,資料能長期的儲存在有極化效果的閘極絕緣層裡,並且利用元件的VT位移產生的window做非破壞性的資料讀取。此概念在已被實驗證明出,但在實作上難以達成非揮發性記憶體操作規格。
本研究的目標就是發展利用鐵電負電容,達到低次臨界擺幅次世代電晶體研究與1T記憶體,故於此研究將發展HfO2:Zr,造成極化效果。目標則是改善次臨界擺幅(subthreshold swing)與hysteresis window,讓資料能儲存於FeRAM中。
The paper of T. S. Böscke’s team reported in IEDM 2011.The FeFET is a long-term contender for a fast, low power and nonvolatile memory technology.
Physical limitation of Boltzmann tyranny with 2.3kbT/decade for MOSFET at room temperature restricts the switching slope. For break through the physical limitation, the equation of body factor of subthreshold swing must be < 1, the Cins turn into negative capacitance by select insulator material. Subthreshold swing will be < 60mv/dec. at room temperature.
In FeRAM, information is permanently stored as polarization state of the gate insulator and can be read non-destructively as a shift of the threshold voltage. The FeRAM concept was experimentally demonstrated, but the practical implementation has remained elusive.
In this study, we will develop the low swing FET and 1T Memory by negative capacitance concept. Therefore, we will develop HfO2:Zr to achieve polarization effect. The objective is to improve the subthreshold swing and hysteresis window let the information stored in FeRAM.
[1] K. J. Hubbard and D. G. Schlom, ‘‘Thermodynamic stability of binary oxIDesin contact with silicon, ’’ J. Mater. Res., vol. 11, p. 2757, 1996.
[2] D. H. Triyoso, P. J. Tobin, B. E. White Jr., R. Gregory and X. D. Wang, “Impact of film properties of atomic layer deposited HfO2 resulting from annealing with a TiN capping layer,’’ Appl. Phys. Lett., vol. 89, no. 13, 132903, 2006.
[3] S. Migita, Y. Watanabe, H. Ota, H. Ito, Y. Kamimuta, T. Nabatame, and A. Toriumi1, “Design and Demonstration of Very High-k (k~50) HfO2 for Ultra-Scaled Si CMOS,’’ in VLSI Symp. Tech. Dig., 2008, pp. 152-153.
[4] J. Müller, E. Yurchuk, T. Schlösser, J. Paul, R. Hoffmann, S. Müller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, K. SeIDel, P. Kücher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schröder and T. Mikolajick , “Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG,’’ in VLSI Symp. Tech. Dig., 2012, pp. 25-26.
[5] L. V. Hai, M. Takahashi and S. Sakai, “Fabrication and characterization of sub-0.6-μm ferroelectric-gate field-effect Transistors”, Semicond. Sci. Technol. 25, 115013, 2010.
[6] L. V. Hai, M. Takahashi and S. Sakai, “Downsizing of Ferroelectric Gate Field Effect Transistors for ferroelectric-NAND Flash Memory,” IEEE Non-Volatile Semiconductor Memory Workshop, Jun 2011.
[7] S. Salahuddin, and S. Datta, ‘‘Can the subthreshold swing in a classical FET be lowered below 60 mV/decade?,’’ in IEDM Tech. Dig., pp. 693-696, 2008.
[8] A. I. Khan, C. W. Yeung, C. Hu, and S. Salahuddin, “Ferroelectric Negative Capacitance MOSFET: Capacitance Tuning & Antiferroelectric Operation,” in IEDM Tech. Dig., pp. 255-258, 2011.
[9] G. A. Salvatore, D. Bouvet, and A. M. Ionescu, “Demonstration of Subthrehold Swing Smaller Than 60mV/decade in Fe-FET with P(VDF-TrFE)/SiO2 Gate Stack, ” in IEDM Tech. Dig., pp. 167-170, 2008.
[10] A. Rusu, G. A. Salvatore, D. Jimenez, and A. M. Ionescu, ‘‘Metal-Ferroelectric-Metal-OxIDe- Semiconductor Field Effect Transistor with Sub-60mV/decade Subthreshold Swing and Internal Voltage Amplification,’’ in IEDM Tech. Dig., pp. 395-398, 2010.
[11] J. C. Wong, and S. Salahuddin, “Can piezoelectricity lead to negative capacitance?, ” in IEDM Tech. Dig., pp. 343-346, 2014.
[12] R. K. Jana, A. Ajoy, G. SnIDer, and D. Jena, “Sub-60 mV/decade Steep Transistors with Compliant Piezoelectric Gate Barriers, ” in IEDM Tech. Dig., pp. 347-350, 2014.
[13] J. Müller, T. S. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, J. Sundqvist, P. Kücher, T. Mikolajick, and L. Frey, “Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications,’’ Appl. Phys. Lett., vol. 99, iss. 11, 112901, 2011.
[14] J. Müller, U. Schröder, T. S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, and L. Frey, “Ferroelectricity in yttrium-doped hafnium oxIDe,’’ J. Appl. Phys., vol. 110, no. 11, 114113, 2011.
[15] S. Müller, J. Müller, A. Singh1, S. Riedel, J. Sundqvist, U. Schroeder and T. Mikolajick, “Incipient Ferroelectricity in Al-Doped HfO2 Thin Films,’’ , Adv. Funct. Mater., vol. 22, no. 11, pp. 2412-2417, June 6, 2012.
[16] T. S. Böscke, St. Teichert, D. Bräuhaus, J. Müller, U. Schröder, U. Böttger and T. Mikolajick, “Phase transitions in ferroelectric silicon doped hafnium oxIDe,’’ Appl. Phys. Lett., vol. 99, no. 11, 112904, 2011.
[17] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Lett., pp. 4318−4323, 2012
[18] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, “Ferroelectricity in Hafnium OxIDe: CMOS compatible Ferroelectric Field Effect Transistors,’’ in IEDM., 2011, pp. 547-550.
[19] S. L. Miller, R. D. Nasby, J. R. Schwank, M. S. Rodgers, and P. V. Dressendorfer, “Device modeling of ferroelectric capacitors,’’ J. Appl. Phys., vol. 68, no.12, 6463, 1990.
[20] P. D. Kirsch, M. A. Quevedo-Lopez, S. A. Krishnan, B. H. Lee,G. Pant, M. J. Kim, R. M. Wallace and B. E. Gnade, “Mobility and charge trapping comparison for crystalline and amorphous HfON and HfSiON gate dielectrics,’’ Appl. Phys. Lett., vol. 89, no. 24, 242909, 2006.
[21] T. P. Ma, and Jin-Ping Han, “Why is Nonvolatile Ferroelectric Memory Field-Effect Transistor Still Elusive?,” IEEE Electron Device Letter, vol. 23, no. 7, pp. 386-388, 2002.