簡易檢索 / 詳目顯示

研究生: 莊智凱
Chuang, Jhih-Kai
論文名稱: 類神經網路應用於兩輪平衡載具之電池能量預測研究
The Study of Battery Energy Forecasting based on Neural Networks for Two-Wheeled Vehicles
指導教授: 呂藝光
Leu, Yih-Guang
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 80
中文關鍵詞: 倒傳遞類神經網路殘電量電動載具
英文關鍵詞: Back propagation artificial neural networks, state of charge, electric vehicle
論文種類: 學術論文
相關次數: 點閱:243下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在於開發出電動載具所使用的電池能量監測與電量預測系統。首先,監測載具電池的充放電狀態與實際騎乘的車況資訊,建立雲端載具電量資料庫,其中車況資訊包括溫度、電流、電壓、傾斜度、顛頗度、車速等。接著,根據資料庫的電量資訊,利用倒傳遞類神經網路來學習載具電池耗損曲線,並且建立電量估測模型。此外,利用歷史電量資料來即時預測未來電池能量數值變化,以提供使用者了解電動載具電池未來電量使用狀況,以及電動載具可再移動距離資訊。
    最後,為了驗證電動載具電量估測與預測方法的可行性與精確度,本研究以兩輪平衡電動車為例,在國立臺灣師範大學校園進行實際騎乘實驗,實驗結果顯示該電量估測與預測方法可行,精確度符合需求。

    The purpose of this study is to develop a battery power monitoring and forecasting system for electric vehicle. First of all, the state of charge of the vehicle and real road experiment data can be saved to a cloud database. The data of the database include temperature, battery current, battery voltage, road conditions, speed, etc. Based on these data, the back propagation artificial neural networks (BPANN) are used to learn the loss feature of the battery and to build the estimate model of the battery. Besides, the historical data are utilized to forecast the future power result. Therefore, the users can acquire the power information and running distance immediately.
    Finally, some experiments are performed to verify the accuracy and feasibility of the power monitoring and forecasting system by using the two-wheeled vehicle at National Taiwan Normal University. The experiment results show that the power monitoring and forecasting system is feasible, and its accuracy is acceptable

    目 錄 摘 要 i ABSTRACT ii 誌 謝 iv 目 錄 vi 圖 目 錄 ix 表 目 錄 xii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法 3 1.3 研究目的 4 1.4 各章節簡述 4 第二章 文獻探討與回顧 5 2.1 常見的二次電池 5 2.1.1 鉛酸電池 5 2.1.2 鋰電池 6 2.1.3 超級電容 6 2.2常見的預測方法 7 2.2.1灰色理論預測 7 2.2.2類神經網路預測 7 2.2.3自迴歸移動平均模型預測 8 2.3 電池殘電量(SOC) 8 2.4類神經網路 9 2.4.1倒傳遞類神經網路 9 2.4.2類神經網路數學模型 10 第三章 兩輪平衡車電池能量監控系統平台設計 14 3.1 實驗載具 14 3.1.1硬體架構 14 3.1.2量測模組 17 3.2充放電平台 24 3.3 實作實驗APP端 25 第四章 實驗與討論 26 4.1實驗一 電池內阻測量實驗 26 4.1.1內阻等效模型 26 4.1.2內阻建模實驗 27 4.1.3實驗數據 30 4.1.4類神經學習結果 33 4.1.5實際測試的流程 36 4.1.6實驗結果 37 4.2 實驗二 殘電量領前預測實驗(一) 41 4.2.1類神經網路與數據建模 41 4.2.2 實驗數據 42 4.2.3類神經學習結果 49 4.2.4模疑與實際結果比較 53 4.3 實驗二 殘電量領前預測實驗(二) 68 4.3.1類神經學習 68 4.3.2類神經學習結果 69 4.3.3模疑與實際結果比較 71 第五章 結論與未來展望 76 5.1結論 76 5.2未來展望 76 參考文獻 77

    [1] SEGWAY官方網站,取自http://www.segway.com/,2014。
    [2] Vasebi, Amir, Maral Partovibakhsh, and S. Bathaee,“A novel combined battery model for state-of-charge estimation in lead-acid batteries based on extended Kalman filter for hybrid electric vehicle applications."Journal of Power Sources , vol.174 , pp. 30-40, 2007.
    [3] Sepasi, Saeed, Reza Ghorbani, and Bor Yann Liaw,“A novel on-board state-of-charge estimation method for aged Li-ion batteries based on model adaptive extended Kalman filter."ournal of Power Sources , vol. 245 , pp. 337-344, 2014.
    [4] Gholizadeh, Mehdi, and Farzad R. Salmasi, “Estimation of State of Charge, Unknown Nonlinearities, and State of Health of a Lithium-Ion Battery Based on a Comprehensive Unobservable Model." Industrial Electronics, vol. 61, pp. 1335-1344, 2014.
    [5] Hsieh, Guan-Chyun, Liang-Rui Chen, and Kuo-Shun Huang“Fuzzy-controlled Li-ion battery charge system with active state-of-charge controller.“Industrial Electronics,vol.48, pp. 585-593,2001.
    [6] Lee, Jaemoon, Oanyong Nam, and B. H. Cho. "Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering." Journal of Power Sources vol.174,pp.9-15,2007.
    [7] Ceraolo, Massimo. "New dynamical models of lead-acid batteries." IEEE Transactions on Power Systems, 15.4 ,pp. 1184-1190,2000
    [8] Sinkaram, Chelladurai, Kausillyaa Rajakumar, and Vijanth Asirvadam. “Modeling battery management system using the lithium-ion battery.’’ IEEE International Conference on. IEEE, Control System, Computing and Engineering (ICCSCE), pp.50-55,2012.
    [9] T.H.M. El-Fouly, E.F. El-Saadany, and M.M.A. Salama, “Improved Grey predictor rolling models for wind power prediction,” Generation, Transmission & Distribution, IET, vol. 1, pp. 928-937, 2007.
    [10] Shi Nan, Zhou Su-quan, Zhu Xian-hui, Su Xun-wen, and Zhao Xiao-yan, “Wind speed forecasting based on grey predictor and genetic neural network models,” Measurement, Information and Control (ICMIC), International Conference, 2013.
    [11] 黃嘉煒,“具有啟動保護之獨立充電儲能系統設計”,國立臺灣師範大學應用電子科技學系碩士班,碩士論文,2013。
    [12] 李承洲,“獨立充電儲能系統設計”,國立臺灣師範大學應用電子科技學系碩士班,碩士論文,2011。
    [13] Bhangu, B.S, Bentley, P, Stone, D.A, Bingham, C.M. “Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles.’’ IEEE Transactions on Vehicular Technology, vol. 54 , pp.783-794, 2005.
    [14] Wang, Haiying, et al, “Study on State of Charge Estimation of Batteries for Electric Vehicle.’’ ASP 2013, ASTL ,vol. 18, pp. 10-14, 2013.
    [15] Shaban, Khaled, Ayman El-Hag, and Andrei Matveev. “A cascade of artificial neural networks to predict transformers oil parameters.’’ IEEE Transactions on Dielectrics and Electrical Insulation,vol.16,pp. 516-523,2009.
    [16] 台灣湯淺電池 官方網站,取自http://www.yuasa.com.tw/index.php,2015。
    [17] 李典融,“兩輪平衡車電池監控系統設計與實現”,國立台灣師範大學應用電子科技學系碩士班,碩士論文,2014。
    [18] 王小川,MATLAB神經網路43個案例分析,北京航空航天大學出版社,2013。
    [19] 溫彥候,“兩輪式自我平衡車之控制器設計與實現”,國立台灣師範大學應用電子科技學系碩士班,碩士論文,2013。
    [20] 林裕勝,“細菌演化模糊控制器及其在兩輪移動載具控制上之應用研究”,國立台灣師範大學應用電子科技學系碩士班,碩士論文,2013。
    [21] 孫仕勳,“基於能量螞蟻演算法之路徑規劃與其在雲端平台運算的實現”,國立臺灣師範大學電機工程學系,碩士論文,2015。
    [22] Jaemoon Lee, Oanyong Nam, and B.H. Cho, “Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering” Jourla of Power Sources vol. 174,pp. 9-15,2007.
    [23] Liu Jian-Yong, Li Ling, Zhang Yong-Li, and Li Yan, ” A multi-series grey forecasting model based on neural network improved by genetic algorithm,” IEEE International Conference,Grey Systems and Intelligent Services, pp. 684-688, 2007.
    [24] Qiong Xu, Li-juan Chen, Ping-liang Zeng, Xiao-hui Xu,”Correlation modeling among multi-wind farms based on Copula-ARMA wind speed model” 2014 China International Conference Electricity Distribution (CICED) ,pp. 543-546, 2014.
    [25] Jianyong Zhang, Cong Wang,” Application of ARMA Model in Ultra-short Term Prediction of Wind Power”, 2013 International Conference, Computer Sciences and Applications (CSA), pp.361-364,2013.
    [26] 盧苹源,“應用類神經網路技術在金門風場之長時間風力發電預測”,國立臺灣師範大學工業教育學系,碩士論文,2014。

    下載圖示
    QR CODE