簡易檢索 / 詳目顯示

研究生: 李俊儒
論文名稱: 一維單負材料光子晶體之計算
Numerical Studies of Optical Properties of One-Dimensional Single-Negative(SNG) Material Photonic Crystals
指導教授: 吳謙讓
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 33
中文關鍵詞: 一維單負材料
英文關鍵詞: One-Dimensional Single-Negative(SNG) Material
論文種類: 學術論文
相關次數: 點閱:185下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要是採用數值模擬的方法,研究一維單負材料光子晶體的光學特性及應用。首先我們研究單負雙層結構透射性質的研究,另外對於一維結構的光子晶體,我們透過轉移矩陣法來計算由正、負折射率之介質相互交替排列的周期組成,並求得其透射的光學頻譜。利用模擬的結果,我們分析在負折射率材質用不同的介電常數、導磁濾常數及層數對透射率的變化;進一步歸納出各個變量在整體的結構中,所可能扮演的角色及造成的效應。

    In this thesis, we numerical study the optical properties for the photonic

    crystals made of single-negative materials. We use the transfer matrix

    method to calculate the transmission for the one-dimensional photonic

    systems. The first we study is the layered structure made of ENG-MNG

    bilayer structure. The transmission properties have been investigated as

    a function of static parameters of the permittivity and permeability. In

    the second part, we have extend our study to the negative-index

    material, i.e., a photonic crystal made of NIM and PIM. We have

    investigated the defect modes in this structure. The analysis of defect

    modes can be informative to the design of optical filter.

    第一章 導論………………………………………… 01 第二章 理論方法 2-1轉移矩陣法………………………………………………03 2-1-1 單層介質的動態矩陣………………………………………… 03 2-1-2 單層轉移矩陣………………………………………………… 06 2-1-3 多層轉移矩陣………………………………………………… 08 2-1-4 透射率與反射率………………….……………………………11 第三章 單負材料(SNG)光學性質之研究 3-1簡介………………………………………………………13 3-2 基本方程式……………………………………………15 3-3 數值結果與討論……………………………………… 16 3-3-1 ENG的多層膜結構………………………………………………16 3-3-2 ENG-MNG的多層膜結構…………………………………………17 第四章 缺陷模態(defect mode) 4-1簡介………………………………………………………21 4-2基本方程式………………………………………………21 4-3數值結果與討論…………………………………………23 4-3-1非對稱型……………………………………………………… 23 4-3-2對稱型………………………………………………………… 25 第五章 結論…………………………………………28 參考文獻………………………………………………29

    [1] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys.Rev. Lett. 1987;58:2059–2062.

    [2] John S. Strong localization of photons in certain disordered dielectric super lattices. Phys.Rev. Lett. 1987;58:2486–2489.

    [3] Yablonovitch E. Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 1991;67:2295–2298.

    [4] Joannopoulos JD, Johnson SG, Winn JN, Meada RD. Photoniccrystals: modeling the flow of light. 2nd ed. Princeton: Princeton University Press; 2008.

    [5] Schneider GJ, Watson GH. Nonlinear optical spectroscopy in one-dimensional photonic crystals. Appl. Phys. Lett. 2003;83:5350–5352.

    [6] Mansouriu JA, Zapata-Rodriguez CJ, Silvestre E, Furlan WD. Cantor-like fractal photonic crystal waveguides. Opt. Commun. 2005;252:46–51.

    [7] Smith DR, Dalichaouch R, Kroll N, Schultz S, McCall SL, Platzman PM. Photonic band structure and defect in one and two dimension. J. Opt. Soc. Am. B. 1993;10:314–321.

    [8] Veselago VG. The electrodynamics of substances with simultaneously negative values of e and l . Sov. Phys. Usp. 1968;10:509–514.

    [9] Lotfi E, Jamshidi-Ghaleh K, Moslem F, Masalehdan H. Comparison
    of photonic crystal narrow filters with metamaterials and dielectric defects. Eur. Phys. J. D: Atomic Mol. Opt. Phys. 2010;60:369–372.

    [10] Zhu Q, Zhang Y. Defect modes and wavelength tuning of one-dimensional photonic crystal with lithium niobate. Optik 2009;120:195–198.

    [11] Lyubchanskii IL, Dadoenkova NN, Zabolotin AE, Lee YP, Rasing Th. A one-dimensional photonic crystal with a superconducting defect layer. J. Opt. A: Pure Appl. Opt.2009;11:114014.

    [12] Ansari N, Tehranchi MM, Ghanaatshoar M. Characterization of defect modes in one-dimensional photonic crystals: an analytic approach. Phys. B: Condensed Matter. 2009;404:1181–1186.

    [13] Li X, Xie K, Jiang HM. Properties of defect modes in one-dimensional photonic crystals containing two nonlinear defects. Opt. Commun. 2009;282:4292–4295.

    [14] Hung HC, Wu CJ, Chang SJ. A mid-infrared tunable filter in a semiconductore-dielectric photonic crystal containing dopt semiconductore defect. Solid State Commun. 2011;151:1677–1680.

    [15] Wu CJ, Wang ZH. Properties of defect modes in one-dimensional photonic crystals. Prog. Electromagn. Res. 2010;103:169–184.

    [16] King TC, Yang YP, Liou YS, Wu CJ. Tunable defect mode in a semiconductor-dielectric photonic crystal containing extrinsic semiconductor defect. Solid State Commun. 2012;152:2189–2192.

    [17] Hu CA, Liu JW, Wu CJ, Yang TJ, Yang SL. Effects of superconducting film on the defect mode in dielectric photonic crystal heterostructure. Solid State Commun. 2013;157:54–57.

    [18] Rechtaman M, Szameit A, Dreisow F, Heinrich M, Keil R, Nolte S, Segev M. Amorphous photonic lattices: band gaps, effective mass, and suppressed transport. Phys. Rev. Lett. 2011;106:193904.

    [19] Ghosh S, Varshney RK, Pal BP, Monnom G. A Bragg-like chirped clad all-solid microstructured optical fiber with ultra-wide bandwidth for short pulse delivery and pulse reshaping.
    Opt. Quant. Electron. 2010;42:1–14.

    [20] Zhang W, Han P, Lan A, Li Y, Zhang X. Defect modes tuning of one-dimensional photonic crystals with lithium niobate and silver material defect. Phys. E: Low-dimensional Syst. Nanostruct. 2012;44:813–815.

    [21] Aly AH, Elsayed HA. Defect mode properties in a one-dimensional photonic crystal. Phys. B: Condensed Matter. 2012;407:120–125.

    [22] Chen YH, Liang GQ, Dong JW, Wang HZ. Derivation and characterization of dispersion of defect modes in photonic band gap from stacks of positive and negative index materials.
    Phys. Lett. A 2006;351:446–451.

    [23] Tang KS, Xiang YJ, Wen SC. Defect in photonic crystal with negative index material. Optoelectron. Lett. 2006;2:118–121.

    [24] Jiang H, Chen H, Li H, Zhang Y. Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials. Appl. Phys. Lett. 2003;83:5386–5388.

    [25] Wang LG, Chen H, Zhu SY. Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials. Phys. Rev. B. 2004;70:245102.

    [26] Xu Q, Xie K, Yang H, Tang J. Periodic defect modes of one-dimensional crystals containing single-negative materials. Optik. 2010;121:1558–1562.

    [27] Xiang Y, Dai X, Wen S, Fan D. Properties of omnidirectional gap
    and defect mode of one-dimensional photonic crystal containing
    indefinite metamaterials with a hyperbolic dispersion. J. Appl. Phys. 2007;102:093107.

    [28] Wang H, Luo Y, Wang YT, Zhang HB, Fang YT. Splitting of defect-mode in one-dimensionalmagnetic photonic crystal. Phys. B: Condensed Matter. 2012;406:2977–2981.

    [29] Aghajamali A, Barati M. Properties of defect modes in periodic lossy multilayer with negative-index-materials. Commun. Theor. Phys. 2013;60:80–86.

    [30] C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, Singapore, 2004.

    [31] D.R. Smith, W. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett.84 (2000) 4184.

    [32] R.A. Shelby, D.R. Smith, S. Schultz, Science 292 (2001) 77.

    [33] R.A. Shelby, D.R. Smith, S.C. Nemat-Nasser, S. Schultz, Appl. Phys. Lett. 78 (2001) 489.

    [34] N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering. Explorations, John Wiley & Sons, Singapore, 2006.

    [35] C. Sabah, S. Uckun, Opto-Electron. Rev. 15 (2007) 133.

    [36] J.R. Canto, S.A. Matos, C.R. Paiva, A.M. Barbosa, PIERS Online 4 (2008) 546.

    [37] H.-T. Hsu, K.-C. Ting, T.-J. Yang, C.-J. Wu, Solid State Commun. 150 (2010) 644

    [38] L.G. Wang, H. Chen, S.Y. Chou, Phys. Rev. B 70 (2004) 245102.
    [39] D.-W. Yeh, C.-J. Wu, Opt. Express 17 (2009) 16666.

    [40] A. Alu, N. Engheta, IEEE Trans. Antennas and Propagation 51 (2003) 2558.

    [41] D.-W. Yeh, C.-J. Wu, J. Opt. Soc. Amer. B 26 (2009) 1506.

    [42] L. Dong, G. Du, H. Jiang, H. Chen, Y. Shi, J. Opt. Soc. Amer. B 26 (2009) 1091.

    無法下載圖示 電子全文延後公開
    2029/02/16
    QR CODE