研究生: |
李俊儒 |
---|---|
論文名稱: |
一維單負材料光子晶體之計算 Numerical Studies of Optical Properties of One-Dimensional Single-Negative(SNG) Material Photonic Crystals |
指導教授: | 吳謙讓 |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 33 |
中文關鍵詞: | 一維單負材料 |
英文關鍵詞: | One-Dimensional Single-Negative(SNG) Material |
論文種類: | 學術論文 |
相關次數: | 點閱:185 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要是採用數值模擬的方法,研究一維單負材料光子晶體的光學特性及應用。首先我們研究單負雙層結構透射性質的研究,另外對於一維結構的光子晶體,我們透過轉移矩陣法來計算由正、負折射率之介質相互交替排列的周期組成,並求得其透射的光學頻譜。利用模擬的結果,我們分析在負折射率材質用不同的介電常數、導磁濾常數及層數對透射率的變化;進一步歸納出各個變量在整體的結構中,所可能扮演的角色及造成的效應。
In this thesis, we numerical study the optical properties for the photonic
crystals made of single-negative materials. We use the transfer matrix
method to calculate the transmission for the one-dimensional photonic
systems. The first we study is the layered structure made of ENG-MNG
bilayer structure. The transmission properties have been investigated as
a function of static parameters of the permittivity and permeability. In
the second part, we have extend our study to the negative-index
material, i.e., a photonic crystal made of NIM and PIM. We have
investigated the defect modes in this structure. The analysis of defect
modes can be informative to the design of optical filter.
[1] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys.Rev. Lett. 1987;58:2059–2062.
[2] John S. Strong localization of photons in certain disordered dielectric super lattices. Phys.Rev. Lett. 1987;58:2486–2489.
[3] Yablonovitch E. Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 1991;67:2295–2298.
[4] Joannopoulos JD, Johnson SG, Winn JN, Meada RD. Photoniccrystals: modeling the flow of light. 2nd ed. Princeton: Princeton University Press; 2008.
[5] Schneider GJ, Watson GH. Nonlinear optical spectroscopy in one-dimensional photonic crystals. Appl. Phys. Lett. 2003;83:5350–5352.
[6] Mansouriu JA, Zapata-Rodriguez CJ, Silvestre E, Furlan WD. Cantor-like fractal photonic crystal waveguides. Opt. Commun. 2005;252:46–51.
[7] Smith DR, Dalichaouch R, Kroll N, Schultz S, McCall SL, Platzman PM. Photonic band structure and defect in one and two dimension. J. Opt. Soc. Am. B. 1993;10:314–321.
[8] Veselago VG. The electrodynamics of substances with simultaneously negative values of e and l . Sov. Phys. Usp. 1968;10:509–514.
[9] Lotfi E, Jamshidi-Ghaleh K, Moslem F, Masalehdan H. Comparison
of photonic crystal narrow filters with metamaterials and dielectric defects. Eur. Phys. J. D: Atomic Mol. Opt. Phys. 2010;60:369–372.
[10] Zhu Q, Zhang Y. Defect modes and wavelength tuning of one-dimensional photonic crystal with lithium niobate. Optik 2009;120:195–198.
[11] Lyubchanskii IL, Dadoenkova NN, Zabolotin AE, Lee YP, Rasing Th. A one-dimensional photonic crystal with a superconducting defect layer. J. Opt. A: Pure Appl. Opt.2009;11:114014.
[12] Ansari N, Tehranchi MM, Ghanaatshoar M. Characterization of defect modes in one-dimensional photonic crystals: an analytic approach. Phys. B: Condensed Matter. 2009;404:1181–1186.
[13] Li X, Xie K, Jiang HM. Properties of defect modes in one-dimensional photonic crystals containing two nonlinear defects. Opt. Commun. 2009;282:4292–4295.
[14] Hung HC, Wu CJ, Chang SJ. A mid-infrared tunable filter in a semiconductore-dielectric photonic crystal containing dopt semiconductore defect. Solid State Commun. 2011;151:1677–1680.
[15] Wu CJ, Wang ZH. Properties of defect modes in one-dimensional photonic crystals. Prog. Electromagn. Res. 2010;103:169–184.
[16] King TC, Yang YP, Liou YS, Wu CJ. Tunable defect mode in a semiconductor-dielectric photonic crystal containing extrinsic semiconductor defect. Solid State Commun. 2012;152:2189–2192.
[17] Hu CA, Liu JW, Wu CJ, Yang TJ, Yang SL. Effects of superconducting film on the defect mode in dielectric photonic crystal heterostructure. Solid State Commun. 2013;157:54–57.
[18] Rechtaman M, Szameit A, Dreisow F, Heinrich M, Keil R, Nolte S, Segev M. Amorphous photonic lattices: band gaps, effective mass, and suppressed transport. Phys. Rev. Lett. 2011;106:193904.
[19] Ghosh S, Varshney RK, Pal BP, Monnom G. A Bragg-like chirped clad all-solid microstructured optical fiber with ultra-wide bandwidth for short pulse delivery and pulse reshaping.
Opt. Quant. Electron. 2010;42:1–14.
[20] Zhang W, Han P, Lan A, Li Y, Zhang X. Defect modes tuning of one-dimensional photonic crystals with lithium niobate and silver material defect. Phys. E: Low-dimensional Syst. Nanostruct. 2012;44:813–815.
[21] Aly AH, Elsayed HA. Defect mode properties in a one-dimensional photonic crystal. Phys. B: Condensed Matter. 2012;407:120–125.
[22] Chen YH, Liang GQ, Dong JW, Wang HZ. Derivation and characterization of dispersion of defect modes in photonic band gap from stacks of positive and negative index materials.
Phys. Lett. A 2006;351:446–451.
[23] Tang KS, Xiang YJ, Wen SC. Defect in photonic crystal with negative index material. Optoelectron. Lett. 2006;2:118–121.
[24] Jiang H, Chen H, Li H, Zhang Y. Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials. Appl. Phys. Lett. 2003;83:5386–5388.
[25] Wang LG, Chen H, Zhu SY. Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials. Phys. Rev. B. 2004;70:245102.
[26] Xu Q, Xie K, Yang H, Tang J. Periodic defect modes of one-dimensional crystals containing single-negative materials. Optik. 2010;121:1558–1562.
[27] Xiang Y, Dai X, Wen S, Fan D. Properties of omnidirectional gap
and defect mode of one-dimensional photonic crystal containing
indefinite metamaterials with a hyperbolic dispersion. J. Appl. Phys. 2007;102:093107.
[28] Wang H, Luo Y, Wang YT, Zhang HB, Fang YT. Splitting of defect-mode in one-dimensionalmagnetic photonic crystal. Phys. B: Condensed Matter. 2012;406:2977–2981.
[29] Aghajamali A, Barati M. Properties of defect modes in periodic lossy multilayer with negative-index-materials. Commun. Theor. Phys. 2013;60:80–86.
[30] C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, Singapore, 2004.
[31] D.R. Smith, W. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett.84 (2000) 4184.
[32] R.A. Shelby, D.R. Smith, S. Schultz, Science 292 (2001) 77.
[33] R.A. Shelby, D.R. Smith, S.C. Nemat-Nasser, S. Schultz, Appl. Phys. Lett. 78 (2001) 489.
[34] N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering. Explorations, John Wiley & Sons, Singapore, 2006.
[35] C. Sabah, S. Uckun, Opto-Electron. Rev. 15 (2007) 133.
[36] J.R. Canto, S.A. Matos, C.R. Paiva, A.M. Barbosa, PIERS Online 4 (2008) 546.
[37] H.-T. Hsu, K.-C. Ting, T.-J. Yang, C.-J. Wu, Solid State Commun. 150 (2010) 644
[38] L.G. Wang, H. Chen, S.Y. Chou, Phys. Rev. B 70 (2004) 245102.
[39] D.-W. Yeh, C.-J. Wu, Opt. Express 17 (2009) 16666.
[40] A. Alu, N. Engheta, IEEE Trans. Antennas and Propagation 51 (2003) 2558.
[41] D.-W. Yeh, C.-J. Wu, J. Opt. Soc. Amer. B 26 (2009) 1506.
[42] L. Dong, G. Du, H. Jiang, H. Chen, Y. Shi, J. Opt. Soc. Amer. B 26 (2009) 1091.