研究生: |
王至恩 Wang, Zhih-En |
---|---|
論文名稱: |
虛擬實境與創意傾向對學習者沉浸效應與創意表現影響之腦波研究 The Effect of Virtual Reality and Creative Tendency on Learners' Immersion Effect, Creative Performance and Brain Waves |
指導教授: |
張玉山
Chang, Yu-Shan |
口試委員: | 邱昌其 林弘昌 |
口試日期: | 2021/06/29 |
學位類別: |
碩士 Master |
系所名稱: |
科技應用與人力資源發展學系 Department of Technology Application and Human Resource Development |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 155 |
中文關鍵詞: | 虛擬實境 、創意傾向 、沉浸效應 、創意表現 、腦波 |
英文關鍵詞: | virtual reality, creativity tendency, immersive experience, creative performance, EEG, brainlink neuro feedback |
研究方法: | 準實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202100640 |
論文種類: | 學術論文 |
相關次數: | 點閱:184 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技日新月異,虛擬實境在教育上的應用也嶄露頭角。虛擬實境的沉浸效應可提升學習者的學習效果及動機。在創造力研究中,多數研究會從中探討學習者的創意表現,此外人格特質也是其中一項重要課題。如今藉著神經科學的技術,有助於我們了解大腦的生理結構、區域功能和各種訊息處理時的神經迴路;這些生理上的實徵證據,更能夠幫助我們推論創造力的內在歷程。
因此本研究目的在於探討虛擬實境應用教學、講述式教學與不同創意傾向的學習者,在沉浸效應及創意表現之影響,並且分析創意歷程中腦波是否有顯著差異。本研究以船舶設計製為主題,教學內容包含浮力、船舵控制、創意設計。研究對象為北區在職教師,透過研習進行教學實驗。本研究自變項為教學方法及創意傾向;依變項為沉浸效應、創意表現及腦波數據,採非隨機實驗控制組前後測準實驗設計。
研究結果顯示,在虛擬實境應用教學對沉浸效應與創意表現有部分正面影響;創意傾向對於沉浸效應部分有顯著差異,在創意表現上無顯著影響。在創意歷程中,學習者腦波在教學方法與創意傾向上無顯著差異。
The application of virtual reality in education has also emerged. The immersive experience of virtual reality can enhance the learning effect and motivation of learners. Creativity research often explores the creative performance and personality traits of learners. The technology of neuroscience helps us understand the regional functions and neural circuits of various information processing in the brain. These physiological evidences can help us to infer the inner process of creativity.
Therefore, the purpose of this research is to explore the impact of virtual reality application teaching, traditional teaching and learners with different creative tendency on the immersive experience and creative performance, and to analyze whether there are significant differences in brain waves in the creative process. The teaching unit of this study is Ship Design and Manufacturing. The teaching content includes buoyancy, rudder control, and creative design. The research objects are in-service teachers. The independent variables are teaching methods and creative tendencies; the dependent variables are immersive experience, creative performance and brain wave data. The quasi-experimental research design is adapted.
The research results show that the application of teaching in virtual reality has a positive effect on the immersive experience and creative performance; the creative tendency has a significant difference in the immersive experience, and there is no significant impact on the creative performance. In the creative process, the learners' brain waves have no significant differences in teaching methods and creative inclination.
參考文獻
一、中文部份
Mihaly Csiksentmihalyi(1999)。創造力(杜明城,譯)。時報(原著出版於1996年)。
毛連塭、郭有遹、陳龍安、林幸台(2000)。創造力研究。心理。
余民寧(2005)。心理與教育統計學(修訂二版)。三民。
王佩瑜(2017)。磨課師教學影片之鏡頭角度與背景設計對學習記憶與心流經驗之影響。教育資料與圖書館學,54(3),237-268。
王韻雯(2019)。[DFC創意行動挑戰教學方案]對國中學生創造力與創造性傾向之成效研究(未出版碩士論文)。臺灣師範大學。
吳佩芬(2016)。特色街區導覽系統之使用者情緒與沉浸經驗研究。設計學報,21(2),25-48。
李偉清(2012)。「國小資優生創造傾向量表」之編製研究。特殊教育研究學刊,37(1),79-102。
沈翠蓮(2015)。創意原理與設計。五南。
林志勇、黃維信、宋文旭、許峻嘉(2006)。認識虛擬實境。全華。
林幸台、王木榮(1994)。威廉斯創造力測驗。心理。
林福貹(2006)。論述科學創造力。屏縣教育季刊,26,9-13。
張世彗(2003)。創造力:理論,技術/技法與培育。五南。
張玉山(2002)。虛擬團隊之創造力研究-以師院勞作課程為例(未出版博士論文)。臺灣師範大學。
張玉山(2013)。雲端運算教學運用對不同認知取向大學生的設計創意歷程之影響。行政院國家科學委員會專題研究。未出版。
張玉山、陳思貽(2013,5月)。雲端學習對學生創意表現之影響。2013第二屆工程與科技教育學術研討會,臺北市,臺灣。
張春興(1991)。現代心理學。東華。
張美玲(2019)。360度虛擬實境影片閱讀模式之沉浸經驗探討-以Cardboard與Monitor為例(未出版碩士論文)。國立臺中教育大學。
張基成、林冠佑(2016)。從傳統數位學習到遊戲式數位學習-學習成效、心流體驗與認知負荷。科學教育學刊,24(3),221-248。
教育部(2002)。創造力教育白皮書。教育部。
曹文力(2005)。在遊戲情境中以沉浸經驗探討玩興對創造力的影響(未出版碩士論文)。國立交通大學。
陳萌智、龔祥賀(2019)。虛擬實境遊戲提升銀髮族專注力。福祉科技與服務管理學刊,7(2),150-166。
郭有遹(2001)。創造心理學。正中。
陳思貽(2014)。雲端行動學習與創意環境對創意表現的影響(未出版碩士論文)。臺灣師範大學。
陳龍安、朱湘吉(1999)。創造與生活。五南。
溫卓謀、章勝傑(2019)。大學休閒水肺潛水課程參與者學習歷程的心流體驗與情緒經驗之研究。運動休閒管理學報,16(1),1-22。
籃文彬、游森期(2014)。大學生正負向完美主義、心流傾向與心理幸福感之結構方程模式分析。臺中教育大學學報:數理科技類,28(2),25-50。
二、外文部份
Abraham, A. (2013). The promises and perils of the neuroscience of creativity. Frontiers in Human Neuroscience, 7, 246. https://doi.org/10.3389/fnhum.2013.00246
Amabile, T. M. (1983). The social psychology of creativity: A componential conceptualization. Journal of Personality and Social Psychology, 45(2), 357. https://doi.org/10.1037/0022-3514.45.2.357
Amabile, T. M. (1988). A model of creativity and innovation in organizations. Research in Organizational Behavior, 10(1), 123-167.
Amin, H. U., Ousta, F., Yusoff, M. Z., & Malik, A. S. (2021). Modulation of cortical activity in response to learning and long-term memory retrieval of 2D verses stereoscopic 3D educational contents: Evidence from an EEG study. Computers in Human Behavior, 114, 106526. https://doi.org/10.1016/j.chb.2020.106526
Barhorst, J. B., McLean, G., Shah, E., & Mack, R. (2021). Blending the real world and the virtual world: Exploring the role of flow in augmented reality experiences. Journal of Business Research, 122, 423-436. https://doi.org/10.1016/j.jbusres.2020.08.041
Benedek M. (2018). The neuroscience of creative idea generation. In: Kapoula Z., Volle E., Renoult J., Andreatta M. (Eds), Exploring Transdisciplinarity in Art and Sciences (pp. 31-48). Springer, Cham. https://doi.org/10.1007/978-3-319-76054-4_2
Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology. Wiley.
Cabañero, L., Hervás, R., González, I., Fontecha, J., Mondéjar, T., & Bravo, J. (2020). Characterisation of mobile-device tasks by their associated cognitive load through EEG data processing. Future Generation Computer Systems, 113, 380-390. https://doi.org/10.1016/j.future.2020.07.013
Chang, C. C., Liang, C., Chou, P. N., & Lin, G. Y. (2017). Is game-based learning better in flow experience and various types of cognitive load than non-game-based learning? Perspective from multimedia and media richness. Computers in Human Behavior, 71, 218-227. https://doi.org/10.1016/j.chb.2017.01.031
Chang, Y. S. (2021). Effects of virtual reality application on skill learning for optical-fibre fusion splicing. British Journal of Educational Technology, 00, 1–18. https://doi.org/10.1111/bjet.13118.
Chang, Y. S., Chen, M. Y. C., Chuang, M. J., & Chou, C. H. (2019). Improving creative self-efficacy and performance through computer-aided design application. Thinking Skills and Creativity, 31, 103-111. https://doi.org/10.1016/j.tsc.2018.11.007
Chen, P. Z., Chang, T. C., & Wu, C. L. (2020). Effects of gamified classroom management on the divergent thinking and creative tendency of elementary students. Thinking Skills and Creativity, 36, 100664. https://doi.org/10.1016/j.tsc.2020.100664
Cheng, K. H., & Tsai, C. C. (2019). A case study of immersive virtual field trips in an elementary classroom: Students’ learning experience and teacher-student interaction behaviors. Computers & Education, 140, 1-15, 103600. https://doi.org/10.1016/j.compedu.2019.103600
Cheng, P. -Y., Chien, Y. -C., & Huang, Y. -M. (2017). The design and implementation of a real-time attention recognition/feedback system in online learning course. 2017 International Conference of Educational Innovation through Technology (EITT), pp. 214–217. IEEE.
Chrysikou, E. G., Wertz, C., Yaden, D. B., Kaufman, S. B., Bacon, D., Wintering, N. A., Jung, R. E., & Newberg, A. B. (2020). Differences in brain morphometry associated with creative performance in high-and average-creative achievers. NeuroImage, 218, 116921. https://doi.org/10.1016/j.neuroimage.2020.116921
Cropley, A. (2006). In praise of convergent thinking. Creativity Research Journal, 18 (3), 391–404. https://doi.org/10.1207/s15326934crj1803_13
Csikszentmihalyi, M., & Csikszentmihalyi, I. (1988). Introduction to part IV. In M. Csikszentmihalyi & I. Csikszentmihalyi (Eds.), Optimal Experience: Psychological Studies of Flow in Consciousness (pp. 251-265). Cambridge: Cambridge University Press.
https://doi.org/10.1017/CBO9780511621956
Csikszentmihalyi, M., & Csikzentmihaly, M. (1990). Flow: The psychology of optimal experience. Harper & Row.
Csikszentmihalyi, M., & LeFevre, J. (1989). Optimal experience in work and leisure. Journal of Personality and Social Psychology, 56(5), 815-812. https://doi.org/10.1037/0022-3514.56.5.815
Csikszentmihalyi, M., & Nakamura, J. (2014). The dynamics of intrinsic motivation: A study of adolescents. In Flow and the foundations of positive psychology (pp. 175-197). Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9088-8_12
Csikzentmihalyi, M. (1975). Beyond boredom and anxiety. San Francisco: Jossey-Bass.
Dehn, L. B., Kater, L., Piefke, M., Botsch, M., Driessen, M., & Beblo, T. (2018). Training in a comprehensive everyday-like virtual reality environment compared to computerized cognitive training for patients with depression. Computers in Human Behavior, 79, 40-52. https://doi.org/10.1016/j.chb.2017.10.019
Di Serio, Á., Ibáñez, M. B., & Kloos, C. D. (2013). Impact of an augmented reality system on students' motivation for a visual art course. Computers & Education, 68, 586-596. https://doi.org/10.1016/j.compedu.2012.03.002
Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review, 11(6), 1011-1026. https://doi.org/10.3758/BF03196731
Ellis, G. D., Voelkl, J. E., & Morris, C. (1994). Measurement and analysis issues with explanation of variance in daily experience using the flow model. Journal of Leisure Research, 26(4), 337-356. https://doi.org/10.1080/00222216.1994.11969966
Erhel, S., & Jamet, E. (2019). Improving instructions in educational computer games: Exploring the relations between goal specificity, flow experience and learning outcomes. Computers in Human Behavior, 91, 106-114. https://doi.org/10.1016/j.chb.2018.09.020
Fink, A., & Neubauer, A. C. (2008). Eysenck meets Martindale: The relationship between extraversion and originality from the neuroscientific perspective. Personality and Individual Differences, 44(1), 299-310. https://doi.org/10.1016/j.paid.2007.08.010
Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., Neuper, C., Ebner, F. & Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30(3), 734-748. https://doi.org/10.1002/hbm.20538
Fortis, P., Goedert, K. M., & Barrett, A. M. (2011). Prism adaptation differently affects motor-intentional and perceptual-attentional biases in healthy individuals. Neuropsychologia, 49(9), 2718-2727. https://doi.org/10.1016/j.neuropsychologia.2011.05.020
Furnham, A., & Bachtiar, V. (2008). Personality and intelligence as predictors of creativity. Personality and Individual Differences, 45(7), 613-617. https://doi.org/10.1016/j.paid.2008.06.023
García-García, C., Chulvi, V., Royo, M., Gual, J., & Felip, F. (2019). Does the work environment affect designers’ creativity during the creative phase depending on their personality profile?. Thinking Skills and Creativity, 33, 100578. https://doi.org/10.1016/j.tsc.2019.100578
Gomes, P., Seco, N., Pereira, F. C., Paiva, P., Carreiro, P., Ferreira, J. L., & Bento, C. (2006). The importance of retrieval in creative design analogies. Knowledge-Based Systems, 19(7), 480-488. https://doi.org/10.1016/j.knosys.2006.04.006
Gómez, J. G., Huete, J. F., & Riaño, V. H. (2014). Learning system based on contextual awareness for clinical practice in nursing courses, 2014 IEEE 14th International Conference on Advanced Learning Technologies, pp. 186-190. IEEE.
González-Garrido, A. A., Gómez-Velázquez, F. R., Salido-Ruiz, R. A., Espinoza-Valdez, A., Vélez-Pérez, H., Romo-Vazquez, R., Gallardo-Moreno, G. B., Ruiz-Stovel, V.D., Martínez-Ramos, A. & Berumen, G. (2018). The analysis of EEG coherence reflects middle childhood differences in mathematical achievement. Brain and Cognition, 124, 57-63. https://doi.org/10.1016/j.bandc.2018.04.006
Gottfried, A. E. (2019). Academic intrinsic motivation: Theory, assessment, and longitudinal research. Advances in Motivation Science, 6, 71-109. https://doi.org/10.1016/bs.adms.2018.11.001
Gralewski, J., & Jankowska, D. M. (2020). Do parenting styles matter? Perceived dimensions of parenting styles, creative abilities and creative self-beliefs in adolescents. Thinking Skills and Creativity, 38, 100709. https://doi.org/10.1016/j.tsc.2020.100709
Halabi, O. (2020). Immersive virtual reality to enforce teaching in engineering education. Multimedia Tools and Applications, 79, 2987–3004. https://doi.org/10.1007/s11042-019-08214-8
Hallman, R. J. (1963). The commonness of creativity. Educational Theory, 13(2), 132-136. https://doi.org/10.1111/j.1741-5446.1963.tb00119.x
Howard, T. J., Culley, S. J., & Dekoninck, E. (2008). Describing the creative design process by the integration of engineering design and cognitive psychology literature. Design Studies, 29(2), 160-180. https://doi.org/10.1016/j.destud.2008.01.001
Huang, C. L., Luo, Y. F., Yang, S. C., Lu, C. M., & Chen, A. S. (2020). Influence of students’ learning style, sense of presence, and cognitive load on learning outcomes in an immersive virtual reality learning environment. Journal of Educational Computing Research, 58(3), 596-615. https://doi.org/10.1177/0735633119867422
Jackson, P. W., & Messick, S. (1965). The person, the product, and the response: Conceptual problems in the assessment of creativity. Journal of Personality, 33(3), 309-329. https://doi.org/10.1111/j.1467-6494.1965.tb01389.x
Jackson, S. A., & Marsh, H. W. (1996). Development and validation of a scale to measure optimal experience: The flow state scale. Journal of Sport and Exercise Psychology, 18(1), 17-35. https://doi.org/10.1123/jsep.18.1.17
Jennett, C., Cox, A. L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., & Walton, A. (2008). Measuring and defining the experience of immersion in games. International Journal of Human-Computer Studies, 66(9), 641-661. https://doi.org/10.1016/j.ijhcs.2008.04.004
Kang, J. S., Ojha, A., Lee, G., & Lee, M. (2017). Difference in brain activation patterns of individuals with high and low intelligence in linguistic and visuo-spatial tasks: An EEG study. Intelligence, 61, 47-55. https://doi.org/10.1016/j.intell.2017.01.002
Kang, X., Handayani, D. O. D., Chong, P. P., & Acharya, U. R. (2020). Profiling of pornography addition among children using EEG signals: A systematic literature review. Computers in Biology and Medicine, 125, 103970. https://doi.org/10.1016/j.compbiomed.2020.103970
Kim, D., & Ko, Y. J. (2019). The impact of virtual reality (VR) technology on sport spectators' flow experience and satisfaction. Computers in Human Behavior, 93, 346-356. https://doi.org/10.1016/j.chb.2018.12.040
Lee, M., Lee, S. A., Jeong, M., & Oh, H. (2020). Quality of virtual reality and its impacts on behavioral intention. International Journal of Hospitality Management, 90, 102595. https://doi.org/10.1016/j.ijhm.2020.102595
Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G., & Moran, D. W. (2004). A brain–computer interface using electrocorticographic signals in humans. Journal of Neural Engineering, 1(2), 63-71. https://doi.org/10.1088/1741-2560/1/2/001
Liao, Y. H., Chen, Y. L., Chen, H. C., & Chang, Y. L. (2018). Infusing creative pedagogy into an English as a foreign language classroom: Learning performance, creativity, and motivation. Thinking Skills and Creativity, 29, 213-223. https://doi.org/10.1016/j.tsc.2018.07.007
Lobert, B. M., & Dologite, D. G. (1994). Measuring creativity of information system ideas: An exploratory investigation. 1994 Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences, pp.392-402. Wailea, HI, USA.
Lucas, M. (2018, January 8). Next VR is adding six-degree-of-freedom (6DoF) tracking to its live-streaming VR service. TechCrunch. https://techcrunch.com/2018/01/08/nextvr-is-adding-6dof-tracking-to-its-live-streaming-vr-service/
Maguire, M. J., & Schneider, J. M. (2019). Socioeconomic status related differences in resting state EEG activity correspond to differences in vocabulary and working memory in grade school. Brain and Cognition, 137, 103619. https://doi.org/10.1016/j.bandc.2019.103619
Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, 225-236.
Maslow, A. H. (1959). New knowledge in human values. Harper.
Massimini, F., & Carli, M. (1988). The systematic assessment of flow in daily experience. In M. Csikszentmihalyi & I. S. Csikszentmihalyi (Eds.), Optimal experience: Psychological studies of flow in consciousness, (pp. 266–287). Cambridge University Press. https://doi.org/10.1017/CBO9780511621956
Meyer, O. A., Omdahl, M. K., & Makransky, G. (2019). Investigating the effect of pre-training when learning through immersive virtual reality and video: A media and methods experiment. Computers & Education, 140, 103603. https://doi.org/10.1016/j.compedu.2019.103603
Neguţ, A., Matu, S. A., Sava, F. A., & David, D. (2016). Task difficulty of virtual reality-based assessment tools compared to classical paper-and-pencil or computerized measures: A meta-analytic approach. Computers in Human Behavior, 54, 414-424. https://doi.org/10.1016/j.chb.2015.08.029
Nunnally, J. C., & Bernstein, I. H. (1978). Psychometric Theory. McGraw-Hill.
Oman, S. K., Tumer, I. Y., Wood, K., & Seepersad, C. (2013). A comparison of creativity and innovation metrics and sample validation through in-class design projects. Research in Engineering Design, 24(1), 65-92. https://doi.org/10.1007/s00163-012-0138-9
Osborn, A. F. (1953). Applied Imagination. Sckibner's Sons.
Pacauskas, D., & Rajala, R. (2017). Information system users’ creativity. Information Technology & People, 30(1), 81-116. https://doi.org/10.1108/ITP-04-2015-0090
Rhodes, M. (1961). An analysis of creativity. The Phi Delta Kappan, 42(7), 305-310.
Schønheyder, J. F., & Nordby, K. (2018). The use and evolution of design methods in professional design practice. Design Studies, 58, 36-62. https://doi.org/10.1016/j.destud.2018.04.001
Seibert, J., & Shafer, D. M. (2018). Control mapping in virtual reality: Effects on spatial presence and controller naturalness. Virtual Reality, 22(1), 79-88. https://doi.org/10.1007/s10055-017-0316-1
Serrano, B., Baños, R. M., & Botella, C. (2016). Virtual reality and stimulation of touch and smell for inducing relaxation: A randomized controlled trial. Computers in Human Behavior, 55, 1-8. https://doi.org/10.1016/j.chb.2015.08.007
Shane, S., & Nicolaou, N. (2015). Creative personality, opportunity recognition and the tendency to start businesses: A study of their genetic predispositions. Journal of Business Venturing, 30(3), 407-419. https://doi.org/10.1016/j.jbusvent.2014.04.001
Stemler, S. E., & Kaufman, J. C. (2020). Are creative people better than others at recognizing creative work?. Thinking Skills and Creativity, 38, 100727. https://doi.org/10.1016/j.tsc.2020.100727
Sternberg, R. J., & Lubart, T. I. (1995). Defying the crowd: Cultivating creativity in a culture of conformity. Free Press.
Stevens Jr, C. E., & Zabelina, D. L. (2019). Creativity comes in waves: an EEG-focused exploration of the creative brain. Current Opinion in Behavioral Sciences, 27, 154-162. https://doi.org/10.1016/j.cobeha.2019.02.003
Stojanova, B. (2010). Development of creativity as a basic task of the modern educational system. Procedia-Social and Behavioral Sciences, 2(2), 3395-3400. https://doi.org/10.1016/j.sbspro.2010.03.522
Sun, M., Wang, M., & Wegerif, R. (2020). Effects of divergent thinking training on students’ scientific creativity: The impact of individual creative potential and domain knowledge. Thinking Skills and Creativity, 37, 100682. https://doi.org/10.1016/j.tsc.2020.100682
Treffinger, D. J., Isaksen, S. G., & Dorval, K. B. (2003). Creative problem solving (CPS version 6.1 TM) a contemporary framework for managing change. Orchard Park.
Tussyadiah, I. P., Wang, D., Jung, T. H., & tom Dieck, M. C. (2018). Virtual reality, presence, and attitude change: Empirical evidence from tourism. Tourism Management, 66, 140-154. https://doi.org/10.1016/j.tourman.2017.12.003
van Rompay, T. J., & Jol, T. (2016). Wild and free: Unpredictability and spaciousness as predictors of creative performance. Journal of Environmental Psychology, 48, 140-148. https://doi.org/10.1016/j.jenvp.2016.10.001
Wang, S., Wang, T., Chen, N., & Luo, J. (2020). The preconditions and event-related potentials correlates of flow experience in an educational context. Learning and Motivation, 72, 101678. https://doi.org/10.1016/j.lmot.2020.101678
Ward, T., Smith, S., & Finke, R. (1998). Creative cognition. In R. Sternberg (Ed.), Handbook of Creativity (pp. 189-212). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511807916.012
Webster, J., Trevino, L. K., & Ryan, L. (1993). The dimensionality and correlates of flow in human-computer interactions. Computers in Human Behavior, 9(4), 411-426. https://doi.org/10.1016/0747-5632(93)90032-N
Wickens, C. D. (1992). Virtual reality and education. [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics (pp. 842-847). IEEE.
Yang, X., Cheng, P. Y., Lin, L., Huang, Y. M., & Ren, Y. (2019). Can an integrated system of electroencephalography and virtual reality further the understanding of relationships between attention, meditation, flow state, and creativity?. Journal of Educational Computing Research, 57(4), 846-876. https://doi.org/10.1177/0735633118770800
Yang, X., Lin, L., Cheng, P. Y., Yang, X., & Ren, Y. (2019). Which EEG feedback works better for creativity performance in immersive virtual reality: The reminder or encouraging feedback?. Computers in Human Behavior, 99, 345-351. https://doi.org/10.1016/j.chb.2019.06.002
Yang, X., Lin, L., Cheng, P. Y., Yang, X., Ren, Y., & Huang, Y. M. (2018). Examining creativity through a virtual reality support system. Educational Technology Research and Development, 66(5), 1231-1254. https://doi.org/10.1007/s11423-018-9604-z
Yoo, J. H., & Kim, Y. J. (2018). Factors influencing nursing students' flow experience during simulation-based learning. Clinical Simulation in Nursing, 24, 1-8. https://doi.org/10.1016/j.ecns.2018.09.001
Zhou, Y., Ji, S., Xu, T., & Wang, Z. (2018). Promoting knowledge construction: a model for using virtual reality interaction to enhance learning. Procedia Computer Science, 130, 239-246. https://doi.org/10.1016/j.procs.2018.04.035