研究生: |
蔡博凱 Tsai, Po-Kai |
---|---|
論文名稱: |
鈀鉑與鈀鉑合金觸媒對於甲乙醇氧化反應表現與機構之探討 Mechanistic Investigation of Methanol/Ethanol Oxidation Reactions (MOR/EOR) on Platinum, and Palladium Their Alloys |
指導教授: |
王禎翰
Wang, Jeng-Han |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 乙醇氧化反應 、甲醇氧化反應 、非即時性傅立葉紅外線光譜儀 、鈀鉑合金觸媒 、比例效應 |
英文關鍵詞: | ratio effect, MOR, PtPd alloy catalyst, ex situ FT-IR, CO-stripping |
DOI URL: | https://doi.org/10.6345/NTNU202202013 |
論文種類: | 學術論文 |
相關次數: | 點閱:205 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討在碳黑(XC-72)上Pt、Pd、PtPd不同比例分別為3:1, 1:1, 1:3(以下寫作Pt3Pd1,Pt1Pd1,Pt3Pd1)觸媒對於直接甲醇(乙醇)燃料電池中的甲醇(乙醇)氧化反應中的陽極反應,在實驗中所用到的合金觸媒皆為含浸法合成,並且使用XRD、SEM、EDS去鑑定物理性質,接著將觸媒放在1M KOH中曝氮氣再使用電化學CV測量ECSA,再分別利用CV及CA測量1M甲醇和乙醇的電催化活性和穩定度。結果顯示合金的活性和穩定度都優於純Pt與Pd其中Pt3Pd1有著最高的MA(1279 mA/ugPt)及SA65(mA/cm2)而Pt1Pd1有著最好的穩定性(經過90分鐘CA測試後仍有原本51%的電流)。進一步利用ex-FTIR來偵測溶液中的2,4,6電子產物(HCHO, HCOOH, CO32-)隨著CV圈數的變化來推測觸媒在MOR的機制,圖譜顯示所有的合金都有些微的差異,其差異趨勢與CA的結果相同。
The present study mechanistic investigates methanol/ethanol oxidation reactions (MOR/EOR), the anodic reactions for direct methanol/ethanol fuel cells (DMFC/DEFC), on Pt, Pd and their alloys with the ratios of Pt/Pd = 3:1, 1:1, 1:3 (denoted as Pt3Pd1, Pt1Pd1 and Pt1Pd3) on carbon black XC-72. All the metallic electrodes were fabricated by the impregnation method and characterized by X-ray diffraction (XRD), Secondary electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The fabricated electrodes were examining by cyclic voltammetry (CV) in 1 M KOH purged with N2 to determine their electrochemical surface area (ECSA). The MOR/EOR activity and stability of the electrodes were investigated by CV and chronoamperometry (CA), respectively, in 1 M methanol/ethanol in alkaline solution of 1 M KOH. The electrochemical tests showed that all the alloys has better both activity and stability than pure Pt and Pd; among them Pt3Pd1 has the best activity with mass activity (MA) =1279 (mA/ugPt)and surface activity (SA) = 65(mA/cm2), and Pt1Pd1 has the best stability (51% decay in 90 minutes CA). The MOR performance was further examined by ex-situ FT-IR to determine the variations of products of HCHO, HCOOH and CO32-(in two, four and-six electron reactions) with CV cycles. The spectroscopic results show that all the alloys have smaller variations, indicating the better stability and agreeing with the CA results.
1. Grove, W.R., XXIV. On voltaic series and the combination of gases by platinum. Philosophical Magazine Series 3, 1839. 14(86-87): p. 127-130.
2. Ozoemena, K.I., Nanostructured platinum-free electrocatalysts in alkaline direct alcohol fuel cells: catalyst design, principles and applications. RSC Advances, 2016. 6(92): p. 89523-89550.
3. Neurock, M., M. Janik, and A. Wieckowski, A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discussions, 2009. 140(0): p. 363-378.
4. Wang, Y., S. Zou, and W.-B. Cai, Recent Advances on Electro-Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction Mechanisms to Catalytic Materials. Catalysts, 2015. 5(3): p. 1507.
5. Ma, L., et al., PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells. Journal of Power Sources, 2013. 241: p. 696-702.
6. Dong, L., et al., Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon, 2010. 48(3): p. 781-787.
7. Fontes, E.H., et al., Electrochemical and in situ ATR-FTIR studies of ethanol electrooxidation in alkaline medium using PtRh/C electrocatalysts. Materials for Renewable and Sustainable Energy, 2015. 4(1).
8. da Silva, S.G., et al., Electrochemical and fuel cell evaluation of PtAu/C electrocatalysts for ethanol electro-oxidation in alkaline media. International Journal of Hydrogen Energy, 2014. 39(19): p. 10121-10127.
9. Mixed-reactant ethanol fuel cell using an electrochemically deposited Ag@Pt tolerant cathode. International Journal of Hydrogen Energy, 2016. 41(48): p. 23417.
10. Rodríguez Varela, F.J. and O. Savadogo, Ethanol-tolerant Pt-alloy cathodes for direct ethanol fuel cell (DEFC) applications. Asia-Pacific Journal of Chemical Engineering, 2009. 4(1): p. 17-24.
11. Alcala, R., et al., Experimental and DFT studies of the conversion of ethanol and acetic acid on PtSn-based catalysts. Journal of Physical Chemistry B, 2005. 109(6): p. 2074-2085.
12. Almeida, T.S., et al., An optimization study of PtSn/C catalysts applied to direct ethanol fuel cell: Effect of the preparation method on the electrocatalytic activity of the catalysts. Journal of Power Sources, 2012. 215: p. 53-62.
13. Artyushkova, K., et al., Mechanistic Study of Electrooxidation of Ethanol on PtSn Nanoparticles in Alkaline and Acid Media. Journal of the Electrochemical Society, 2015. 162(6): p. H345-H351.
14. Qian, H., et al., Platinum–palladium bimetallic nanoparticles on graphitic carbon nitride modified carbon black: A highly electroactive and durable catalyst for electrooxidation of alcohols. Journal of Power Sources, 2015. 300: p. 41-48.
15. Liu, Y., et al., Influence of Pd-doping concentration on activity and CO anti-poisoning ability of PtPd/GNRs alloy catalyst for ethanol oxidation and density functional theory analysis. Journal of Alloys and Compounds, 2016. 656: p. 452-457.
16. Ren, F., et al., Clean Method for the Synthesis of Reduced Graphene Oxide-Supported PtPd Alloys with High Electrocatalytic Activity for Ethanol Oxidation in Alkaline Medium. ACS Applied Materials & Interfaces, 2014. 6(5): p. 3607-3614.
17. Zhang, G., et al., Uniform Pd-Pt alloy nanoparticles supported on graphite nanoplatelets with high electrocatalytic activity towards methanol oxidation. Journal of Materials Chemistry A, 2015. 3(9): p. 5204-5211.
18. Yang, G., et al., Ultrasonic-assisted synthesis of Pd–Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium. Ultrasonics Sonochemistry, 2016. 28: p. 192-198.
19. Wang, X., et al., Highly active carbon supported ternary PdSnPtx (x = 0.1–0.7) catalysts for ethanol electro-oxidation in alkaline and acid media. Journal of Colloid and Interface Science, 2016. 468: p. 200-210.
20. Ye, J.-Y., et al., In-situ FTIR spectroscopic studies of electrocatalytic reactions and processes. Nano Energy, 2016. 29: p. 414-427.