簡易檢索 / 詳目顯示

研究生: 陳章輝
Edi Sudianto
論文名稱: 松科和羅漢松的質體基因組演化和親緣關係與裸子植物中乙酰輔酶A羧化酶基因的演化
Plastid genome evolution and phylogenomics of Pinaceae and Podocarpaceae and the evolution of acetyl-CoA carboxylase genes in gymnosperms
指導教授: 趙淑妙
Chaw, Shu-Miaw
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 151
中文關鍵詞: plastomegymnospermsPinaceaePodocarpaceaeconifersevolutionplastidchloroplastsplastid-to-nucleus gene transfersaccDacetyl-CoA carboxylase
英文關鍵詞: plastome, gymnosperms, Pinaceae, Podocarpaceae, conifers, evolution, plastid, chloroplasts, plastid-to-nucleus gene transfers, accD, acetyl-CoA carboxylase
DOI URL: http://doi.org/10.6345/DIS.NTNU.SLS.001.2019.D01
論文種類: 學術論文
相關次數: 點閱:172下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Plastid genomes (plastomes) serve as valuable and cost-effective genomic resources for plants and algae. More than 2,500 complete plastomes (as of December 2018) are now publicly available on GenBank, and they provide critical information on the evolution and phylogeny of plastid-bearing organisms. In this dissertation, I will focus on the plastome evolution of non-flowering seed plants (gymnosperms). Gymnosperms comprise ca. 1,000 species in five groups, including cycads, ginkgo, gnetophytes, Pinaceae (conifers I), and cupressophytes (conifers II). Cupressophytes may be further divided into five families: Cupressaceae, Taxaceae, Sciadopityaceae, Araucariaceae, and Podocarpaceae. Previous studies have highlighted that gymnosperm plastomes are highly variable. However, our understanding of the plastome evolution within gymnosperm families is incomplete because not all 12 families are equally represented. In this study, I aimed to investigate (1) the plastome evolution and plastid phylogenomics of the two largest conifer families, Pinaceae and Podocarpaceae, and (2) the evolution of acetyl-CoA carboxylase (ACCase) genes in all five groups of gymnosperms.
    This dissertation has four chapters. In chapter one, I reviewed the available literature on gymnosperm plastids, plastome evolution, and ACCase. In chapter two, I reconstructed the complete plastid phylogenomics of Pinaceae by sequencing two Pinaceous genera, Pseudolarix and Tsuga. The intergeneric relationships among members of the Abietoideae subfamily were resolved with Cedrus as sister to the clade containing Pseudolarix-Tsuga and Abies-Keteleeria, which refutes previous phylogenetic studies. I also documented accD elongation in Pinaceae for the first time.
    In chapter three, I examined plastome evolution in the Podocarpaceae and expanded the number of available Podocarpaceae plastomes from 5 to 13. This addition enabled me to gain more insights into plastome evolution within the family. I found an exceptionally enlarged plastome in Lagarostrobos franklinii (Huon pine), a species endemic to Tasmania. Subsequent analyses revealed that the Lagarostrobos plastome is enriched with repetitive sequences, pseudogenes, and intergenic spacers that were not observed in other Podocarpaceae. In addition, plastid phylogenomic trees were also built to resolve problematic nodes in the Podocarpaceae phylogeny.
    In chapter four, I investigated the evolutionary history of ACCase genes in the five gymnosperm groups. These genes are the key regulators of fatty acid biosynthesis, and most plants have both heteromeric and homomeric ACCases in plastids and cytosol, respectively. Heteromeric ACCase is composed of four subunits: three nuclear-encoded accA–C and one plastid-encoded accD, while homomeric ACCase is only encoded by one nuclear ACC gene. This study uncovered that: (1) the ACCD subunit in all cupressophytes (except Sciadopitys) are elongated by lineage-specific tandem repeats, (2) Sciadopitys and gnetophytes have functionally transferred their accD from the plastome to the nucleus, (3) Gnetum has two accDs in their nuclear genomes, and (4) one of Gnetum’s accD dually targets plastids and mitochondria, while the other copy only targets plastoglobuli, a microcompartment within the plastid. This is the first study to report the presence of two accDs and their distinct targeting in any green plant.

    Acknowledgements iii Abstract iv List of Papers vi Table of Contents viii List of Tables xii List of Figures xiv CHAPTER 1: Literature Review 1 1.1. The origin and function of plastids 1 1.2. Plastome size, structure, and content 2 1.3. Transfer of plastid DNA to the nucleus 4 1.4. Gymnosperms and their plastome evolution 7 1.5. Using the plastome to resolve phylogenetic conundrums in gymnosperms 10 1.6. Factors influencing plastome size variation 12 1.7. Evolution of the acetyl-CoA carboxylase complex in plants 13 1.8. Dissertation outline 15 CHAPTER 2: Revisiting the plastid phylogenomics of Pinaceae with two complete plastomes of Pseudolarix and Tsuga 17 2.1. Introduction 18 2.2. Materials and Methods 19 2.3. Results and Discussion 21 2.3.1. Plastomic features of Pseudolarix amabilis and Tsuga chinensis 21 2.3.2. Expansion of the accD reading frame in Tsuga 22 2.3.3. Phylogeny of ten Pinaceous genera re-visited 23 2.3.4. Pseudolarix and Tsuga are sisters 24 2.3.5. Loss of psaM as a synaphomorphy of Pseudolarix and Tsuga 25 2.4. Conclusions 26 CHAPTER 3: Enlarged and highly repetitive plastome of Lagarostrobos and plastid phylogenomics of Podocarpaceae 27 3.1. Introduction 28 3.2. Materials and Methods 31 3.2.1. Plant materials and DNA extraction 31 3.2.2. Plastome sequencing, assembly, and annotation 31 3.2.3. Sequence alignment and phylogenetic tree reconstruction 32 3.2.4. Identification of locally collinear blocks and reconstruction of ancestral plastomes 32 3.2.5. Estimation of nucleotide substitution rates 33 3.2.6. Analyses of divergence times and absolute substitution rates 33 3.3. Results 34 3.3.1. Lagarostrobos plastome is enlarged with abundant repeats 34 3.3.2. Outburst of duplicate genes and pseudogenes in the Lagarostrobos plastome 35 3.3.3. Plastid phylogenomic analysis resolved two major clades in Podocarpaceae 36 3.3.4. Podocarpaceae plastomes contain extensive inversions and diverse sets of the intermediate-sized repeats 36 3.3.5. Rearrangement frequencies do not coincide with nucleotide substitution rates in Podocarpaceae plastomes 37 3.4. Discussion 38 3.4.1. Insights into the phylogeny of Podocarpaceae 38 3.4.2. Mechanisms underlying the enlarged Lagarostrobos plastome 39 3.4.3. Abundant intermediate-sized repeats are likely responsible for numerous rearrangements in Lagarostrobos 40 CHAPTER 4: Two independent plastid accD transfers to the nuclear genome of Gnetum and other insights on acetyl-CoA carboxylase evolution in gymnosperms 43 4.1. Introduction 44 4.2. Materials and Methods 47 4.2.1. Isolation of nucleic acids and cDNA synthesis 47 4.2.2. Sequence retrieval 47 4.2.3. RNA sequencing, transcriptome assembly, and identification of ACCase transcripts 48 4.2.4. Tandem repeats and transit peptide identification 48 4.2.5. Sequence alignment and phylogenetic reconstruction 48 4.2.6. Identification of ACCase genes in nuclear genomes 49 4.2.7. Protoplast transient expression of nr-ACCDs transit peptides 49 4.2.8. Estimation of nucleotide substitution rates 50 4.3. Results 50 4.3.1. Gymnosperms have both heteromeric and homomeric ACCases 50 4.3.2. Specific tandem repeat insertions influence ACCD length in gymnosperms 51 4.3.3. The plastid accDs of gnetophytes and Sciadopitys were transferred to the nucleus and Gnetum retains two copies of nr-ACCD 52 4.3.4. Nuclear genes encoding two heteromeric ACCase subunits (accA and accB) are duplicated in various lineages of gymnosperms 54 4.3.5. Nucleotide substitution rates of plastid accD are co-elevated with accA–C, but not with ACC 55 4.4. Discussion 56 4.4.1. No homomeric ACCase was found in the plastids of any gymnosperms 56 4.4.2. TR insertions in the plastid accD may elevate substitution rates of heteromeric ACCase in gymnosperms 57 4.4.3. The two nr-accDs of Gnetum were the product of independent transfers rather than gene duplication 58 4.4.4. Distinct localization of Gnetum’s two nr-ACCDs 59 CHAPTER 5: Conclusions and Future Work 61 Tables 64 Figures 77 Appendices 113 References 125

    Alverson AJ, Zhuo S, Rice DW, Sloan DB, Palmer JD. 2011. The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats. PLoS ONE 6: e16404. doi:10.1371/journal.pone.0016404
    Babiychuk E et al. 2011. Plastid gene expression and plant development require a plastidic protein of the mitochondrial transcription termination factor family. Proceedings of the National Academy of Sciences of the United States of America 108: 6674–6679.
    Baud S et al. 2003. Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. The Plant Journal: 33: 75–86.
    Bendich AJ. 2004. Circular chloroplast chromosomes: The grand illusion. The Plant Cell 16: 1661–1666. doi: 10.1105/tpc.160771
    Bellot S, Renner SS. 2015. The plastomes of two species in the endoparasite genus Pilostyles (apodanthaceae) each retain just five or six possibly functional genes. Genome Biology and Evolution 8: 189–201. doi:10.1093/gbe/evv251
    Bennett MS, Shiu SH, Triemer RE. 2017. A rare case of plastid protein-coding gene duplication in the chloroplast genome of Euglena archaeoplastidiata (Euglenophyta). Journal of Phycology 53: 493–502. doi:10.1111/jpy.12531
    Biffin E, Brodribb TJ, Hill RS, Thomas P, Lowe AJ. 2012. Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation. Proceedings of Biological Sciences B 279: 341–348. doi:10.1098/rspb.2011.0559
    Biffin E, Conran JG, Lowe AJ. 2011. Podocarp evolution: A molecular phylogenetic perspective. Smithsonian Contributions to Botany 1–20. doi:10.5479/si.0081024X.95.1
    Biswas C, Johri CM. 1997. The gymnosperms. India: Narosa Publishing House.
    Bogdanova VS et al. 2015. Nuclear-cytoplasmic conflict in pea (Pisum sativum L.) is associated with nuclear and plastidic candidate genes encoding acetyl-CoA carboxylase subunits. PLOS ONE 10: e0119835.
    Boisvert S, Laviolette F, Corbeil J. 2010. Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. Journal of Computational Biology 17: 1519–1533. doi:10.1089/cmb.2009.0238
    Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. doi:10.1093/bioinformatics/btu170
    Botte CY, Marechal E. 2014. Plastids with or withour galactoglycerolipids. Trends in Plant Science 19: 71–78. doi: 10.1016/j.tplants.2013.10.004
    Bowe LM, Coat G, de Pamphlis CW. 2000. Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proceedings of the National Academy of Sciences USA 97: 4092–4097.
    Braukmann TW, Kuzmina M, Stefanović S. 2009. Loss of all plastid ndh genes in Gnetales and conifers: extent and evolutionary significance for the seed plant phylogeny. Current Genetics 55(3): 323–337. doi: 10.1007/s00294-009-0249-7.
    Bréhélin C, Kessler F. 2008. The plastoglobule: a bag full of lipid biochemistry tricks. Photochemistry and Photobiology 84: 1388–1394.
    Brenner ED, Stevenson DW, Twigg RW. 2003. Cycads: Evolutionary innovations and the role of plant-derived neurotoxins. Trends in Plant Science 8: 446–452.
    Brown AP, Slabas AR, Rafferty JB. 2010. Fatty acid biosynthesis in plants — metabolic pathways, structure and organization. In: Wada H, Murata N, eds. Advances in photosynthesis and respiration. Lipids in Photosynthesis. Dordrecht: Springer Netherlands, 11–34.
    Cai Z et al. 2008. Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions. Journal of Molecular Evolution 67: 696–704. doi:10.1007/s00239-008-9180-7
    Chan CS, Bhattacharya D. 2010. The origin of plastids. Nature Education 3: 84.
    Chase MW et al. 1993. Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 80: 528–580.
    Chaw SM, Sung HM, Long H, Zharkikh A, Li WH. 1995. The phylogenetic positions of the conifer genera Amentotaxus, Phyllocladus, and Nageia inferred from 18S rRNA sequences. Journal of Molecular Evolution 41: 224–230. doi:10.1007/BF00170676
    Chaw SM, Zhahrikh A, Sung HM, Lau TC, Li WH. 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: Analysis of nuclear 18S rRNA sequences. Molecular Biology and Evolution 14: 56–68.
    Chaw SM, Parkinson CL, Cheng Y, Vincent TM, Palmer JD. 2000. Seed plant phylogeny inferred from all three plant genomes: Monophyly of extant gymnosperms and origin of Gnetales from conifers. Proceedings of the National Academy of Sciences USA 97: 4086–4091.
    Chaw SM, Wu CS, Sudianto E. 2018. Evolution of gymnosperm plastid genomes, in: Plastid Genome Evolution, Advances in Botanical Research. Elsevier, pp. 195–222. doi:10.1016/bs.abr.2017.11.018
    Christenhusz MJM, and Byng JW. 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261: 201. doi:10.11646/phytotaxa.261.3.1.
    Chumley TW et al. 2006. The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Molecular Biology and Evolution 23: 2175–2190. doi:10.1093/molbev/msl089
    Clark CM, Carbone I. 2008. Chloroplast DNA phylogeography in long-lived Huon pine, a Tasmanian rain forest conifer. Canadian Journal of Forest Research 38: 1576–1589. doi:10.1139/X07-209
    Conran JG et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715–724.
    Conway S. 2013. Beyond pine cones: An introduction to gymnosperms. Arnoldia 70: 2–14.
    Cosner ME, Raubeson LA, Jansen RK. 2004. Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evolutionary Biology 4: 27. doi: 10.1186/1471-2148-4-27
    Crisp MD, Cook LG. 2011. Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytologist 192: 997–1009. doi: 10.1111/j.1469-8137.2011.03862.x
    Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5: e11147. doi:10.1371/journal.pone.0011147
    Darriba D, Taboada G, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772–772. doi: 10.1038/nmeth.2109.
    Darriba D, Taboada GL, Doallo R, Posada D. 2011. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27: 1164–1165.
    Day A, Madesis P. 2007. DNA replication, recombination, and repair in plastids. In: Bock, R, editor. Cell and Molecular Biology of Plastids. Topics in Current Genetics. Vol. 19. Heidelberg (Germany): Springer. p. 65–119.
    Delfosse K et al. 2015. Fluorescent Protein Aided Insights on Plastids and their Extensions: A Critical Appraisal. Frontiers in Plant Science 6: 1253.
    Deschamps P et al. 2008. Metabolic symbiosis and the birth of the plant kingdom. Molecular Biology and Evolution 25: 536–548.
    de Vries J, Sousa FL, Bolter B, Soll J, Gould SB. 2015. YCF1: A green TIC? The Plant Cell 27: 1827–1833. doi: 10.1105/tpc.114.135541
    Doyle JA, Donoghue MJ. 1986. Seed plant phylogeny and the origin of angiosperms: An experimental cladistics approach. The Botanical Review 52: 321–431.
    Drescher A, Ruf S, Calsa T Jr, Carrer H, Bock R. 2000. The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. The Plant Journal 22: 97–104. doi: 10.1046/j.1365-313x.2000.00722.x
    Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 5: 113. doi: 10.1186/1471-2105-5-113.
    Emanuelsson O, Brunak S, von Heijne G, Nielsen H. 2007. Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols 2: 953–971.
    Enright NJ, Jaffré T. 2011. Ecology and distribution of the malesian podocarps. Smithsonian Contributions to Botany 57–77. doi:10.5479/si.0081024X.95.57
    Farjon A. 1990. Pinaceae: Drawings and Descriptions of the Genera Abies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea. Koeltz Scientific Books: Konigstein.
    Farjon A, Filer D. 2013. An Atlas of the World’s Conifers: An Analysis of their Distribution, Biogeography, Diversity and Conservation Status. BRILL.
    Feijão P, Araujo E. 2016. Fast ancestral gene order reconstruction of genomes with unequal gene content. BMC Bioinformatics 17: 413. doi:10.1186/s12859-016-1261-9
    Focke M et al. 2003. Fatty acid biosynthesis in mitochondria of grasses: malonyl-coenzyme A is generated by a mitochondrial-localized acetyl-coenzyme A carboxylase. Plant Physiology 133: 875–884.
    Forest F et al. 2018. Gymnosperms on the EDGE. Scientific Reports 8: 6053. doi: 10.1038/s41598-018-24365-4
    Frankis MP. 1988. Generic inter-relationships in Pinaceae. Notes Royal Botanical Garden Edinburgh 45: 527–548.
    Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. 2004. VISTA: computational tools for comparative genomics. Nucleic Acids Research 32: W273–W279. doi: 10.1093/nar/gkh458.
    Fuse S, Tamura MN. 2000. A phylogenetic analysis of the plastid matK gene with emphasis on Melanthiaceae sensu lato. Plant Biology 2: 415–427. doi: 10.1055/s-2000-5953
    Gao L, Zhou Y, Wang ZW, Su YJ, Wang T. 2011. Evolution of the rpoB-psbZ region in fern plastid genomes: notable structural rearrangements and highly variable intergenic spacers. BMC Plant Biology 11: 64. doi: 10.1186/1471-2229-11-64
    Gernandt DS et al. 2008. Use of simultaneous analyses to guide fossil‐based calibrations of Pinaceae phylogeny. International Journal of Plant Science 169: 1086–1099. doi: 10.1086/590472.
    Gernandt DS, Willyard A, Syring J, Liston A. 2011. The Conifers (Pinophyta). In: Kole C, ed. Genetics, Genomics and Breeding of Conifers. Science Publishers.
    Gitzendanner MA, Soltis PS, Wong GKS, Ruhfel BR, Soltis DE. 2018. Plastid phylogenomic analysis of green plants: A billion years of evolutionary history. American Journal of Botany 105: 291–301. doi: 10.1002/ajb2.1048
    Guisinger MM, Kuehl JV, Boore JL, Jansen RK. 2011. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Molecular Biology and Evolution 28: 583–600. doi:10.1093/molbev/msq229
    Grewe F, Guo W, Gubbels EA, Hansen AK, Mower JP. 2013. Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes. BMC Evolutionary Biology 13: 8. doi: 10.1186/1471-2148-13-8
    Goremykin VV, Holland B, Hirsch-Ernst KI, Hellwig FH. 2005. Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Molecular Biology and Evolution 22: 1813–1822.
    Gornicki P, Faris J, King I, Podkowinski J, Gill B, Haselkorn R. 1997. Plastid-localized acetyl-CoA carboxylase of bread wheat is encoded by a single gene on each of the three ancestral chromosome sets. Proceedings of the National Academy of Sciences of the United States of America 94: 14179–14184.
    Guan R et al. 2016. Draft genome of the living fossil Ginkgo biloba. GigaScience 5: 49.
    Gueguen V, Macherel D, Jaquinod M, Douce R, Bourguignon J. 2000. Fatty acid and lipoic acid biosynthesis in higher plant mitochondria. The Journal of Biological Chemistry 275: 5016–5025.
    Guo W et al. 2014. Predominant and substoichiometric isomers of the plastid genome coexist within Juniperus plants and have shifted multiple times during cupressophyte evolution. Genome Biology and Evolution 6: 580–590. doi:10.1093/gbe/evu046
    Gurdon C, Maliga P. 2014. Two distinct plastid genome configurations and unprecedented intraspecies length variation in the accD coding region in Medicago truncatula. DNA Research 21: 417–427. doi: 10.1093/dnares/dsu007.
    Haas BJ et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 8: 1494–1512.
    Haberle RC, Fourcade HM, Boore JL, Jansen RK. 2008. Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. Journal of Molecular Evolution 66: 350–361. doi:10.1007/s00239-008-9086-4
    Hao Z et al. 2016. The complete chloroplast genome sequence of a relict conifer Glyptostrobus pensilis: Comparative analysis and insights into dynamics of chloroplast genome rearrangement in cupressophytes and Pinaceae. PLOS ONE 11: e0161809. doi: 10.1371/journal.pone.0161809
    Hart JA. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269–307.
    Harwood JL. 1996. Recent advances in the biosynthesis of plant fatty acids. Biochimica et Biophysica Acta (BBA) – Lipids and Lipid Metabolism 1302: 7–56.
    Hasebe M, Ito M, Kofuji R, Iwatsuki K, Ueda K. 1992. Phylogeny of the gymnosperms inferred from the rbcL gene sequences. The Botanical Magazine (Tokyo) 105: 673–679.
    Havill NP et al. 2008. Phylogeny and Biogeography of Tsuga (Pinaceae) Inferred from Nuclear Ribosomal ITS and Chloroplast DNA Sequence Data. Systematic Botany 33: 478–489. doi: 10.1600/036364408785679770.
    Hawkins J, Bodén M. 2006. Detecting and sorting targeting peptides with neural networks and support vector machines. Journal of Bioinformatics and Computational Biology 04: 1–18.
    Hedges SB, Marin J, Suleski M, Paymer M, Kumar S. 2015. Tree of life reveals clock-like speciation and diversification. Molecular Biology and Evolution 32: 835–845. doi:10.1093/molbev/msv037
    Hill CR, Crane PR. 1982. Evolutionary cladistics and the origin of angiosperms. In: Joysey KA, Friday AE (Eds.), Problems of phylogenetic reconstruction. pp. 269–361. London: Academic Press.
    Hirao T, Watanabe A, Kurita M, Kondo T, Takata K. 2008. Complete nucleotide sequence of the Cryptomeria japonica D. Don. Chloroplast genome and comparative chloroplast genomics: Diversified genomic structure of coniferous species. BMC Plant Biology 8: 70.
    Hsu CY, Wu CS, Chaw SM. 2014. Ancient nuclear plastid DNA in the yew family (Taxaceae). Genome Biology and Evolution 6: 2111–2121.
    Hsu CY, Wu CS, Chaw SM. 2016a. Birth of four chimeric plastid gene clusters in Japanese umbrella pine. Genome Biology and Evolution 8: 1776–1784. doi:10.1093/gbe/evw109
    Hsu CY, Wu CS, Surveswaran S, Chaw S-M. 2016b. The complete plastome sequence of Gnetum ula (Gnetales: Gnetaceae). Mitochondrial DNA Part A 27: 3721–3722.
    Hu S et al. 2015. Plastome organization and evolution of chloroplast genes in Cardamine species adapted to contrasting habitats. BMC Genomics. 16: 306. doi: 10.1186/s12864-015-1498-0.
    Huang CY, Grunheit N, Ahmadinejad N, Timmis JN, Martin W. 2005. Mutational decay and age of chloroplast and mitochondrial genomes transferred recently to angiosperm nuclear chromosomes. Plant Physiology 138: 1723–1733. doi: 10.1104/pp.105.060327
    Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 17: 754–755.
    Huerlimann R, Heimann K. 2013. Comprehensive guide to acetyl-carboxylases in algae. Critical Reviews in Biotechnology 33: 49–65.
    Jansen RK, Ruhlman TA. 2012. Plastid genomes of seed plants. In: Bock R and Knoop V, editors. Genomics of chloroplasts and mitochondria, advances in photosynthesis and respiration 35. Heidelberg (Germany): Springer. p. 103-126.
    Jiang GF, Hinsinger DD, Strijk JS. 2016. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads. Scientific Reports 6: 31473. doi: 10.1038/srep31473
    Jo YD et al. 2011. Complete sequencing and comparative analyses of the pepper (Capsicum annuum L.) plastome revealed high frequency of tandem repeats and large insertion/deletions on pepper plastome. Plant Cell Reports 30: 217–229.
    Jorda J, Kajava AV. 2009. T-REKS: identification of Tandem REpeats in sequences with a K-meanS based algorithm. Bioinformatics 25: 2632–2638.
    Kapustin Y, Souvorov A, Tatusova T, Lipman D. 2008. Splign: algorithms for computing spliced alignments with identification of paralogs. Biology Direct 3: 20.
    Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.
    Kearse M et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. doi:10.1093/bioinformatics/bts199
    Keeling PJ. 2010. The endosymbiotic origin, diversification and fate of plastids. Philosophical Transactions of the Royal Society B 365: 729–748. doi: 10.1098/rstb.2009.0103
    Kelch D. 1998. Phylogeny of Podocarpaceae: comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986. doi:10.2307/2446365
    Kelch DG. 2002. Phylogenetic assessment of the monotypic genera Sundacarpus and Manoao (Coniferales: Podocarpaceae) utilising evidence from 18S rDNA sequences. Australian Systematic Botany 15: 29–35.
    Keng H. 1978. The genus Phyllocladus (Phyllocladaceae). Journal of the Arnold Arboretum 59: 249–273.
    Kikuchi S et al. 2013. Uncovering the protein translocon at the chloroplast inner envelope membrane. Science 339: 571–574. doi: 10.1126/science.1229262
    Kleine T, Maier UG, Leister D. 2009. DNA transfer from organelles to the nucleus: The idiosyncratic genetics of endosymbiosis. Annual Review of Plant Biology 60: 115–138. doi: 10.1146/annurev.arplant.043008.092119
    Knopf P, Schulz C, Little DP, Stützel T, Stevenson DW. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271–299. doi:10.1111/j.1096-0031.2011.00381.x
    Kode V, Mudd EA, Iamtham S, Day A. 2005. The tobacco plastid accD gene is essential and is required for leaf development. The Plant Journal 44: 237–244. doi: 10.1111/j.1365-313X.2005.02533.x.
    Kolodner R, Tewari KK. 1979. Inverted repeats in chloroplast DNA from higher plants. Proceedings of the National Academy of Sciences USA 76: 41–45.
    Konishi T, Sasaki Y. 1994. Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. Proceedings of the National Academy of Sciences of the United States of America 91: 3598–3601.
    Konishi T, Shinohara K, Yamada K, Sasaki Y. 1996. Acetyl-CoA carboxylase in higher plants: most plants other than gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant & Cell Physiology 37: 117–122.
    Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874. doi:10.1093/molbev/msw054
    Kumar S, Stecher G, Suleski M, Paymer M, Hedges SB. 2017. TimeTree: A resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution 34: 1812–1819.
    Kurtz S et al. 2001. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research 29: 4633–4642.
    Lee DW, Hwang I. 2011. Transient expression and analysis of chloroplast proteins in Arabidopsis protoplasts. Methods in Molecular Biology 774: 59–71.
    Lee SS et al. 2004. Characterization of the plastid-encoded carboxyltransferase subunit (accD) gene of potato. Molecular Cells 17: 422–429.
    Lee HL, Jansen RK, Chumley TW, Kim KJ. 2007. Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Molecular Biology and Evolution 24: 1161–1180. doi:10.1093/molbev/msm036
    LePage BA, Basinger JF. 1995. Evolutionary history of the genus Pseudolarix Gordon (Pinaceae). International Journal of Plant Science 156: 910–950.
    Li J et al. 2016. Evolution of short inverted repeat in cupressophytes, transfer of accD to nucleus in Sciadopitys verticillata and phylogenetic position of Sciadopityaceae. Scientific Reports 6: 20934.
    Li J, Su Y, Wang T. 2018. The Repeat Sequences and Elevated Substitution Rates of the Chloroplast accD Gene in Cupressophytes. Frontiers in Plant Science 9: 533.
    Li Z et al. 2017. Single-copy genes as molecular markers for phylogenomic studies in seed plants. Genome Biology and Evolution 9: 1130–1147.
    Lin CP, Huang JP, Wu CS, Hsu CY, Chaw SM. 2010. Comparative chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies. Genome Biology and Evolution 2: 504–517. doi: 10.1093/gbe/evq036.
    Lockwood JD et al. 2013. A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences. Molecular Phylogenetics and Evolution 69: 717–727. doi: 10.1016/j.ympev.2013.07.004.
    Loconte H, Stevenson DW. 1990. Cladistics of the Spermatophyta. Brittonia 42: 197–211.
    Lohse M, Drechsel O, Kahlau S, Bock R. 2013. OrganellarGenomeDRAW--a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Research 41: W575–W581. doi: 10.1093/nar/gkt289.
    Lowe TM, Chan PP. 2016. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research 44: W54–7. doi:10.1093/nar/gkw413
    Lu Y, Ran JH, Guo DM, Yang ZY, Wang XQ. 2014. Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes. PLoS ONE. 9: e107679. doi: 10.1371/journal.pone.0107679.
    Lynch M. 2006. Streamlining and simplification of microbial genome architecture. Annual Review of Microbiology 60: 327–349. doi:10.1146/annurev.micro.60.080805.142300
    Magee AM et al. 2010. Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Research 20: 1700–1710. doi: 10.1101/gr.111955.110.
    Martin W, Herrmann RG. 1998. Gene transfer from organelles to the nucleus: How much, what happens, and why? Plant Physiology 118: 9–17.
    Martin WF. 2010. Evolutionary origins of metabolic compartmentalization in eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 847-55.
    Matasci Net al. 2014. Data access for the 1,000 Plants (1KP) project. GigaScience 3: 17.
    McDade L, Moody ML. 1999. Phylogenetic relationships among Acanthaceae: Evidence from noncoding trnL–trnF chloroplast DNA sequences. American Journal of Botany 86: 70–80. doi: 10.2307/2656956
    McFadden GI. 2014. Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harbor Perspectives in Biology 6: a016105. doi: 10.1101/cshperspect.a016105
    Michalovova M, Vyskot B, Kejnovsky E. 2013. Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization. Heredity 111: 314–320. doi: 10.1038/hdy.2013.51
    Millen RS et al. 2001. Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. The Plant Cell 13: 645–658.
    Nadalin F, Vezzi F, Policriti A. 2012. GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioinformatics 13: Suppl 14, S8. doi:10.1186/1471-2105-13-S14-S8
    Nagalingum NS et al. Recent synchronous radiation of a living fossil. Science 334: 796–799. doi: 10.1126/science.1209926
    Nickrent DL, Parkinson DL, Palmer JD, Duff RJ. 2000. Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Molecular Biology and Evolution 17: 1885–1895.
    Nikolau BJ, Ohlrogge JB, Wurtele ES. 2003. Plant biotin-containing carboxylases. Archives of Biochemistry and Biophysics 414: 211–222.
    Nkolongo KK, Mehes-Smith M. 2012. Karyotype evolution in the Pinaceae: Implication with molecular phylogeny. Genome 55: 735–753.
    Norstog KJ, Gifford EM, Stevenson DWM. 2004. Comparative development of the spermatozoids of cycads and Ginkgo biloba. The Botanical Review 700: 5–15.
    Nylander JAA. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
    Oldenburg DJ, Bendich AJ. 2004. Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms. Journal of Molecular Biology 335: 953–970. doi: 10.1016/j.jmb.2003.11.020
    Oldenburg DJ, Bendich AJ. 2016. The linear plastid chromosomes of maize: terminal sequences, structures, and implications for DNA replication. Current Genetics 62: 431–442. doi: 10.1007/s00294-015-0548-0
    Page CN. 1990. Phyllocladaceae, in: Kramer, K.U., Green, P.S. (Eds.), Pteridophytes and Gymnosperms. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317–319. doi:10.1007/978-3-662-02604-5_57
    Palmer JD. 1985. Comparative organization of chloroplast genomes. Annual Reviews of Genetics 19: 325–354.
    Palmer JD. 1990. Contrasting modes and tempos of genome evolution in land plant organelles. Trends in Genetics 6: 115–120. doi:10.1016/0168-9525(90)90125-P
    Park S et al. 2017. Contrasting patterns of nucleotide substitution rates provide insight into dynamic evolution of plastid and mitochondrial genomes of Geranium. Genome Biology and Evolution 9: 1766–1780. doi:10.1093/gbe/evx124
    Peter AP et al. 2015. Cyanobacterial KnowledgeBase (CKB), a compendium of cyanobacterial genomes and proteomes. PLOS ONE 10: e0136262. doi: 10.1371/journal.pone.0136262
    Podkowinski J et al. 2003. Expression of cytosolic and plastid acetyl-coenzyme A carboxylase genes in young wheat plants. Plant Physiology 131: 763–772.
    Price RA, Olsen-Stojkovich J, Lowenstein JM. 1987. Relationships among the genera of Pinaceae: An immunological comparison. Systematic Botany 12: 91–97.
    Qu XJ, Wu CS, Chaw SM, Yi TS. 2017a. Insights into the Existence of Isomeric Plastomes in Cupressoideae (Cupressaceae). Genome Biology and Evolution 9: 1110–1119. doi:10.1093/gbe/evx071
    Qu XJ, Jin JJ, Chaw SM, Li DZ, Yi TS. 2017b. Multiple measures could alleviate long-branch attraction in phylogenomic reconstruction of Cupressoideae (Cupressaceae). Scientific Reports 7: 41005. doi: 10.1038/srep41005
    Rabah SO et al. 2018. Passiflora plastome sequencing reveals widespread genomic rearrangements. Journal of Systematics and Evolution.
    Raubeson LA, Jansen RK. 1992. A rare chloroplast DNA structure mutation is shared by all conifers. Biochemical Systematics and Ecology 20: 17–24.
    Reyes-Pierto A, Weber APM, Bhattacharya D. 2007. The origin and establishment of the plastid in algae and plants. Annual Review of Genetics 41: 147–168. doi: 10.1146/annurev.genet.41.110306.130134
    Reyes-Pierto A et al. 2010. Differential gene retention in plastids of common recent origin. Molecular Biology and Evolution 27: 1530–1537.
    Richardson AO, Rice DW, Young GJ, Alverson AJ, Palmer JD. 2013. The “fossilized” mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rates. BMC Biology 11: 29. doi: 10.1186/1741-7007-11-29.
    Richly E, Leister D. 2004. An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice. Gene 329: 11–16.
    Rockenbach K et al. 2016. Positive selection in rapidly evolving plastid-nuclear enzyme complexes. Genetics 204: 1507–1522.
    Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. doi:10.1093/bioinformatics/btg180
    Röschenbleck J, Wicke S, Weinl S, Kudla J, Müller KF. 2017. Genus-wide screening reveals four distinct types of structural plastid genome organization in Pelargonium (Geraniaceae). Genome Biology and Evolution 9: 64–76.
    Rousseau-Gueutin M et al. 2013. Potential functional replacement of the plastidic acetyl-CoA carboxylase subunit (accD) gene by recent transfers to the nucleus in some angiosperm lineages. Plant Physiology 161: 1918–1929. doi: 10.1104/pp.113.214528
    Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG. 2014. From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evolutionary Biology 14: 23.
    Ruhlman TA, Zhang J, Blazier JC, Sabir JSM, Jansen RK. 2017. Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure. American Journal of Botany 104: 559–572. doi:10.3732/ajb.1600453
    Ruhsam M et al. 2015. Does complete plastid genome sequencing improve species discrimination and phylogenetic resolution in Araucaria? Molecular Ecology Resources 15(5): 1067–1078. doi: 10.1111/1755-0998.12375.
    Sanchez-Baracaldo P, Raven JA, Pisani D, Knoll AH. 2017. Early photosynthetic eukaryotes inhabited low-salinity habitats. Proceedings of the National Academy of Sciences USA 114: E7737–E7745. doi: 10.1073/pnas.1620089114
    Sang T, Donoghue MJ, Zhang D. 1997. Evolution of alcholo dehydrogenase genes in peonies (Paeonia): phylogenetic relationships of putative nonhybrid species. Molecular Biology and Evolution 14: 994–1007.
    Sasaki Y, Nagano Y. 2004. Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosciences, Biotechnology, and Biochemistry 68: 1175–1184. doi: 10.1271/bbb.68.1175.
    Sato N, Ishikawa M, Fujiwara M, Sonoike K. 2005. Mass identification of chloroplast proteins of endosymbiont origin by phylogenetic profiling based on organism-optimized homologous protein groups. Genome Informatics 16: 56–68.
    Schattner P, Brooks AN, Lowe TM. 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Research 33: W686–W689. doi: 10.1093/nar/gki366.
    Shapcott A. 1997. Population genetics of the long-lived Huon pine Lagarostrobos franklinii: An endemic Tasmanian temperate rainforest tree. Biological Conservation 80: 169–179. doi:10.1016/S0006-3207(96)00076-6
    Shimodaira H, Hasegawa M. 2001. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics. 17: 1246–1247.
    Shumskaya M, Bradbury LMT, Monaco RR, Wurtzel ET. 2012. Plastid localization of the key carotenoid enzyme phytoene synthase is altered by isozyme, allelic variation, and activity. The Plant Cell 24: 3725–3741.
    Silvestro D, Michalak I. 2012. raxmlGUI: a graphical front-end for RAxML. Organisms Diversity & Evolution. 12: 335–337. doi: 10.1007/s13127-011-0056-0.
    Sinclair WT et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn L-F intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79–104. doi:10.1007/s00606-002-0199-8
    Sloan DB, Alverson AJ, Wu M, Palmer JD, Taylor DR. 2012. Recent acceleration of plastid sequence and structural evolution coincides with extreme mitochondrial divergence in the angiosperm genus Silene. Genome Biology and Evolution 4: 294–306.
    Sloan D et al. 2018. Cytonuclear integration and co-evolution. Nature Review Genetics 19: 635–648. doi: 10.1038/s41576-018-0035-9
    Small I, Peeters N, Legeai F, Lurin C. 2004. Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4: 1581–1590.
    Smith DR, Crosby K, Lee RW. 2011. Correlation between nuclear plastid DNA abundance and plastid number supports the limited transfer window hypothesis. Genome Biology and Evolution 3: 365–371. doi: 10.1093/gbe/evr001
    Smith DR. 2016. The mutational hazard hypothesis of organelle genome evolution: 10 years on. Molecular Ecology 25: 3769–3775. doi:10.1111/mec.13742
    Smith DR. 2018. Plastid genomes hit the big time. New Phytologist 219: 491–495. doi:10.1111/nph.15134
    Smith DR et al. 2013. Organelle genome complexity scales positively with organism size in volvocine green algae. Molecular Biology and Evolution 30: 793–797. doi:10.1093/molbev/mst002
    Sperschneider J et al. 2017. LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell. Scientific Reports 7: 44598.
    Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. doi:10.1093/bioinformatics/btu033
    Stewart CN, Via LE. 1993. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. BioTechniques. 14: 748–750.
    Strans AE, Leebens-Mack J, Milligan BG. 1997. Nuclear DNA-based markers for plant evolutionary biology. Molecular Ecology 6: 113–118.
    Sudianto E, Wu CS, Lin CP, Chaw SM. 2016. Revisiting the plastid phylogenomics of Pinaceae with two complete plastomes of Pseudolarix and Tsuga. Genome Biology and Evolution 8: 1804–1811. doi:10.1093/gbe/evw106
    Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer. Bioinformatics 27: 1009–1010.
    Sveinsson S, Cronk Q. 2014. Evolutionary origin of highly repetitive plastid genomes within the clover genus (Trifolium). BMC Evolutionary Biology 14: 228. doi:10.1186/s12862-014-0228-6.
    Tamura K et al. 2012. Estimating divergence times in large molecular phylogenies. Proceedings of National Academy of Sciences USA. 109: 19333–19338. doi:10.1073/pnas.1213199109
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729. doi: 10.1093/molbev/mst197.
    Tesler G. 2002. GRIMM: genome rearrangements web server. Bioinformatics 18: 492–493.
    Thieret JW. 1993. Pinaceae. In: Flora of North America Editorial Committee, editors. Flora of North America North of Mexico Vol. 2. New York and Oxford: Oxford University Press. p. 352–98.
    Timmis JN, Ayliffe MA, Huang CY, Martin W. 2004. Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nature Review Genetics 5: 123–135. doi: 10.1038/nrg1271.
    Tonti-Filippini J, Nevill PG, Dixon K, Small I. 2017. What can we do with 1000 plastid genomes? The Plant Journal 90: 808–818. doi: 10.1111/tpj.13491
    Vaidya G, Lohman DJ, Meier R. 2011. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics. 27: 171–180. doi: 10.1111/j.1096-0031.2010.00329.x.
    Van Tieghem P. 1891. Structure et affinities des Abies et des genres les plus voisins. Bulletin de la Société botanique de France 38: 406-415.
    Van Wijk KJ, Kessler F. 2017. Plastoglobuli: Plastid Microcompartments with Integrated Functions in Metabolism, Plastid Developmental Transitions, and Environmental Adaptation. Annual Review of Plant Biology 68: 253–289.
    Vieira L et al. 2014. The complete chloroplast genome sequence of Podocarpus lambertii: genome structure, evolutionary aspects, gene content and SSR detection. PLoS ONE 9: e90618. doi:10.1371/journal.pone.0090618
    Vieira L et al. 2016. The plastome sequence of the endemic Amazonian conifer, Retrophyllum piresii (Silba) C.N.Page, reveals different recombination events and plastome isoforms. Tree Genetics and Genomes 12: 10. doi:10.1007/s11295-016-0968-0
    Wakasugi T, Tsudzuki J, Ito S, Shibata M, Sugiura M. 1994. A physical map and clone bank of the black pine (Pinus thunbergii) chloroplast genome. Plant Molecular Biology Reporter 12: 227–241. doi:10.1007/BF02668746
    Wang D et al. 2018. Experimental reconstruction of double-stranded break repair-mediated plastid DNA insertion into the tobacco nucleus. The Plant Journal 93: 227–234. doi: 10.1111/tpj.13769
    Wang L et al. 2011. An embryological study and systematic significance of the primitive gymnosperm Ginkgo biloba. Journal of Systematics and Evolution 49: 353–361.
    Wang XQ, Tank DC, Sang T. 2000. Phylogeny and divergence times in Pinaceae: evidence from three genomes. Molecular Biology and Evolution 17: 773-781.
    Wang XQ, Ran JH. 2014. Evolution and biogeography of gymnosperms. Molecular Phylogenetics and Evolution 75: 24–40. doi: 10.1016/j.ympev.2014.02.005
    Weng M-L, Blazier JC, Govindu M, Jansen RK. 2014. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Molecular Biology and Evolution 31: 645–659. doi:10.1093/molbev/mst257
    Wicke S, Schneeweiss GM, dePamphilis CW, Muller KF, Quandt D. 2011. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Molecular Biology 76: 273–297. doi: 10.1007/s11103-011-9762-4
    Wickett NJ et al. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences USA 111: E4859–E4868.
    Woloszynska M. 2010. Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes--though this be madness, yet there’s method in't. Journal of Experimental Botany 61: 657–671. doi:10.1093/jxb/erp361
    Wu CS, Chaw SM, Huang YY. 2013. Chloroplast phylogenomics indicates that Ginkgo biloba is sister to cycads. Genome Biology and Evolution 5: 243–254.
    Wu CS, Chaw SM. 2014. Highly rearranged and size-variable chloroplast genomes in conifers II clade (cupressophytes): evolution towards shorter intergenic spacers. Plant Biotechnology Journal 12: 344–353. doi:10.1111/pbi.12141
    Wu CS, Chaw SM. 2015. Evolutionary stasis in cycad plastomes and the first case of plastome GC-biased gene conversion. Genome Biology and Evolution 7: 2000–2009. doi: 10.1093/gbe/evv125.
    Wu CS, Chaw SM. 2016. Large-scale comparative analysis reveals the mechanisms driving plastomic compaction, reduction, and inversions in conifers ii (cupressophytes). Genome Biology and Evolution 8: 3740–3750. doi:10.1093/gbe/evw278
    Wu CS, Lai YT, Lin CP, Wang YN, Chaw SM. 2009. Evolution of reduced and compact chloroplast genomes (cpDNA) in gnetophytes: Selection toward a lower cost strategy. Molecular Phylogenetics and Evolution 52: 115–124.
    Wu CS, Wang YN, Hsu CY, Lin CP, Chaw SM. 2011a. Loss of different inverted repeat copies from the chloroplast genomes of Pinaceae and cupressophytes and influence of heterotachy on the evaluation of gymnosperm phylogeny. Genome Biology and Evolution 3: 1284–1295. doi: 10.1093/gbe/evr095.
    Wu CS, Lin CP, Hsu CY, Wang RJ, Chaw SM. 2011b. Comparative chloroplast genomes of Pinaceae: insights into the mechanism of diversified genomic organizations. Genome Biology and Evolution 3: 309–319. doi: 10.1093/gbe/evr026.
    Wu CS, Wang YN, Liu SM, Chaw SM. 2007. Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: Insights into cpDNA evolution and phylogeny of extant seed plants. Molecular Biology and Evolution 24(6): 1366–1379. doi: 10.1093/molbev/msm059.
    Wyman SK, Jansen RK, Boore JL. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics. 20: 3252–3255. doi: 10.1093/bioinformatics/bth352.
    Xie Y et al. 2014. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 30: 1660–1666.
    Xiong AS et al. 2009. Gene duplication, transfer, and evolution in the chloroplast genome. Biotechnology Advances 27: 340–347. doi:10.1016/j.biotechadv.2009.01.012
    Xu B, Yang Z. 2013. PAMLX: a graphical user interface for PAML. Molecular Biology and Evolution 30: 2723–2724. doi: 10.1093/molbev/mst179.
    Yang Z. 2007. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution 24(8): 1586–1591.
    Yap JY et al. 2015. Complete chloroplast genome of the Wollemi Pine (Wollemia nobilis): Structure and evolution. PLOS ONE 10(6): e0128126. doi: 10.1371/journal.pone.0128126.
    Yi X, Gao L, Wang B, Su YJ, Wang T. 2013. The complete chloroplast genome sequence of Cephalotaxus oliveri (Cephalotaxaceae): evolutionary comparison of cephalotaxus chloroplast DNAs and insights into the loss of inverted repeat copies in gymnosperms. Genome Biology and Evolution 5: 688–698. doi: 10.1093/gbe/evt042.
    Zhou Z, Zheng S. 2003. The missing link in Ginkgo evolution. Nature 423: 821–822.
    Zhong B et al. 2011. Systematic error in seed plant phylogenomics. Genome Biology and Evolution 3: 1340–1348.
    Zhong B, Yonezawa T, Zhong Y, Hasegawa M. 2010. The position of gnetales among seed plants: Overcoming pitfalls of chloroplast phylogenomics. Molecular Biology and Evolution 27: 2855–2863.
    Zhu A, Guo W, Gupta S, Fan W, Mower JP. 2016. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytologist 209: 1747–1756. doi:10.1111/nph.13743
    Zimin AV et al. 2017. An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. GigaScience 6: 1–4.

    下載圖示
    QR CODE