研究生: |
李丹玉 Lee, Tan-Yu |
---|---|
論文名稱: |
大腸癌幹細胞新穎標記之研究 Identification of biomarkers for colorectal cancer stem cells |
指導教授: |
賴韻如
Lai, Yun-Ju |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 大腸直腸癌 、大腸直腸癌幹細胞 、生物標記 、驅動蛋白12 |
英文關鍵詞: | colorectal cancer (CRC), colorectal cancer stem cells (CRCSCs), biomarkers, kinesin family member 12 (KIF12) |
DOI URL: | https://doi.org/10.6345/NTNU202202654 |
論文種類: | 學術論文 |
相關次數: | 點閱:156 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
大腸直腸癌是世界上最常見的癌症之一。雖現已研發出一些新治療方式及策略,但對大多數中晚期階段的患者而言,預後狀況仍不樂觀。近年來的研究發現有一小群具有類似幹細胞特性的腫瘤細胞,稱為癌幹細胞,與腫瘤的生成、復發、轉移及對化學放射治療產生抗性有主要關係。因此,能夠找出具專一辨識性的大腸癌幹細胞生物標記是非常切要的。CD133是目前相當普遍被用來辨識和分離癌幹細胞的一種生物標記,但對於其能否作為大腸癌幹細胞的辨識標記仍存有許多爭議,所以我們想要找出其它更專一的大腸癌幹細胞生物標記。目前我們收集了102個中晚期階段不同病人手術切下的腫瘤檢體進行初級細胞培養,包括培養出腫瘤球 (tumorspheres) 與貼盤細胞然後與原來的組織塊一起做mRNA分析,希望能藉此找出與大腸癌幹細胞密切相關的因子。我們篩選出最能以癌幹細胞球繼代培養的2811細胞株,抽取其懸浮培養的腫瘤球及貼盤細胞之RNA,和2901的新鮮腫瘤組織塊之RNA去進行 microarray分析比較。發現驅動蛋白12 (Kinesin Family Member 12, KIF12) 基因的mRNA表現量在懸浮培養的腫瘤球內比起貼盤培養的細胞與腫瘤組織塊要高。我們接著在其他臨床檢體的初級培養細胞中檢測KIF12的mRNA及蛋白質的表現量,結果顯示KIF12的mRNA含量在4株我們初級培養出的人類大腸癌類癌幹細胞中的表現量確實比較高。另外,利用人類大腸癌細胞株HCT-116及HT-29衍生出之類癌幹細胞球亦有同樣的結果。然而,利用Western blot分析其蛋白質表現的結果顯示,KIF12蛋白質在HT-29的類癌幹細胞球中比起貼附的癌細胞確實有明顯升高,但在HCT-116中卻相反。因HT-29與HCT-116細胞株主要差別為HT-29為p53突變之細胞,因此KIF12之表現量與p53之關聯尚須更多研究。根據以上結果,我們希望探討利用KIF12作為大腸癌幹細胞的生物標記之可能性,期望未來能夠提供臨床醫療應用。
Abstract
Colorectal cancer (CRC) is one of the most common cancers in the world. Despite there are different treatments developed, a high percentage of patients with advanced tumor still have poor prognosis. Recent studies have found that a small population of tumor cells, known as cancer stem cells (CSCs), may be responsible for the tumorigenesis, recurrence, metastasis and resistance of chemoradiotherapy. Therefore, it is critical to find the biomarkers of CRC stem cells (CRCSCs). CD133 is currently a widely-used marker to identify and isolate CSCs. However, the use of CD133 in the identification of CRCSCs is still controversial. As a result, we prospect to identify more specific and reliable biomarkers for CRCSCs. We collected 102 fresh surgical specimens from patients with the middle to late stages of CRC, and sub-cultured them to tumorspheres. Meanwhile, we also established the adherent primary cancer cell culture. Then, we analyzed the mRNA of them, and expected to find some key factors which are highly correlated with CRCSCs. The tumorspheroid cell line 2811 with the strongest proliferation ability of all the tested samples was selected and subjected to mRNA microarray analysis. Comparing with its adherent primary cancer cells and 2901unprocessed tumor tissue sample, the kinesin family member 12 (KIF12) had much more expression in the tumorspheres than in the adherent cells and the tumor tissue. Next, we also tested the expressions of the protein and mRNA levels of KIF12 in the four clinical CRC primary cells derived from the other patients. The results suggested that the mRNA levels of KIF12 were really higher in the tumorspheres we cultured. In addition, similar results were observed in two human CRC cell lines, HT-29 and HCT-116. However, the expressions of KIF12 protein were only accumulated in the tumorspheres derived from HT-29, but oppositely decreased in the tumorspheres of HCT-116. The main difference between HT-29 and HCT-116 is that HT-29 has mutant p53. The correlation of KIF12 and p53 needs more studies to elucidate. In summary, KIF12 has the potential for being developed as one of the biomarkers for CRCSCs for clinical applications in the future.
參考文獻
1. Al-Hajj, M., et al. 2003. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983.
2. Bao, S., et al. 2006. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444(7120):756–760.
3. Cheng, T., et al. 2000. Hematopoietic stem cell quiescence maintained by p21(cip1/waf1). Science. 287(5459):1804–1809.
4. Chu, P., et al. 2009. Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer. 124:1312.
5. Cioffi, M., et al. 2015. The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells. Gut. 64(12):1936–1948.
6. Coller, H.A., et al. 2006. A new description of cellular quiescence. PLoS Biology. 4(3):e83.
7. Collins, A.T., et al. 2005. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65:10946.
8. Dalerba, P., et al. 2007. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 104:10158.
9. Dean, M., et al. 2005. Tumour stem cells and drug resistance. Nat Rev Cancer. 5:275.
10. Dembinski, J.L. & Krauss, S. 2009. Characterization and functionalanalysisofaslowcyclingstemcell-likesubpopulationin pancreas adenocarcinoma. Clinical and Experimental Metastasis. 26(7):611–623.
11. Du, L., et al. 2008. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 14:6751.
12. Fan, X., et al. 2006. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 66:7445.
13. Gao, M.Q., et al. 2010. CD24+cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene. 29(18):2672–2680.
14. Goh, H-S., et al. 1994. p53 and the behaviour of colorectal cancer. Lancet. 344:233-234.
15. Greenblatt, M.S., et al. 1994. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54:4855-4878.
16. Hamelin, R., et al. 1994. Association of p53 mutations with short survival in colorectal cancer. Gastroenterology. 106:42-48.
17. Haraguchi, N., et al. 2008. CD133+CD44+ population efficiently enriches colon cancer initiating cells. Ann Surg Oncol. 15:2927.
18. Hollstein, M., et al. 1991. p53 mutations in human cancers. Science (Washington DC). 253:49-53.
19. Hongo, K., et al. 2012. CD133(-) cells, derived from a single human colon cancer cell line, are more resistant to 5-fluorouracil (FU) than CD133(+) cells, dependent on the beta1-integrin signaling. J Surg Res. 175:278.
20. Ieta, K., et al. 2008. Biological and genetic characteristics of tumor-initiating cells in colon cancer. Ann Surg Oncol. 15:638.
21. Ifergan, I., et al. 2009. Riboflavin concentration within ABCG2-rich extracellular vesicles is a novel marker for multidrug resistance in malignant cells. Biochem Biophys Res Commun. 380(1):5-10.
22. Jonker, J.W., et al. 2002. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci U S A. 99(24):15649-15654.
23. Katoh M. & Katoh M. 2005. Characterization of KIF12 gene in silico. Oncol Rep. 13(2):367-70.
24. Kim, C.F., et al. 2005. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 121:823.
25. Kondo, T., et al. 2004. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA. 101:781.
26. Langan, R.C., et al. 2013. Colorectal cancer biomarkers and the potential role of cancer stem cells. J Cancer. 4:241.
27. Levine, A.J., et al. 1994. The role of the p53 tumor suppressor gene in tumorigenesis. Br. J. Cancer. 69:409-416.
28. Li, X-L., et al. 2015. P53 mutations in colorectal cancer - molecular pathogenesis and pharmacological reactivation. World J Gastroenterol. 21(1):84-93.
29. Ma, S., et al. 2007. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 132:2542.
30. Miraglia, S., et al. 1997. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood. 90:5013.
31. Mizrak, D., et al. 2008. CD133: molecule of the moment. J. Pathol. 214:3.
32. Mueller, S.E., et al. 2000. p21(WAF1) regulates anchorage-independent growth of HCT116 colon carcinoma cells via E-cadherin expression. Cancer Research. 60(1):156–163.
33. Muller, P.A., et al. 2013. Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene. 32(10):1252-1265.
34. Naumov, G.N., et al. 2003. Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Research and Treatment. 82(3):199–206.
35. O’Brien, C.A., et al. 2007. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 445:106.
36. Park, J., et al. 2014. The Evolution of Liver-Directed Treatments for Hepatic Colorectal Metastases. Oncology (Williston Park). 28.
37. Perucca, P., et al. 2009. Loss of p21CDKN1Aimpairs entry to quiescence and activates a DNA damage response in normal fibroblasts induced to quiescence. Cell Cycle. 8(1):105–114.
38. Piccirillo, S.G., et al. 2006. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 444:761.
39. Ravizza, R., et al. 2004. Role of the p53/p21 system in the response of human colon carcinoma cells to Doxorubicin. BMC Cancer. 4:92.
40. Ricci-Vitiani, L., et al. 2007. Identification and expansion of human colon-cancer-initiating cells. Nature. 445:111.
41. Rodrigues, N.R., et al. 1990. p53 mutations in colorectal cancer. Proc.
Natl. Acad. Sci. U. S. A. 87:7555-7559.
42. Sang, L., et al. 2008. Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science. 321(5892):1095–1100.
43. Shmelkov, S.V., et al. 2005. AC133/CD133/Prominin-1. Int J Biochem Cell Biol. 37:715.
44. Shmelkov, S.V., et al. 2008. CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest. 118:2111.
45. Shvab, A., et al. 2016. Induction of the intestinal stem cell signature gene SMOC-2 is required for L1-mediated colon cancer progression. Oncogene. 35(5):549-557.
46. Siegel, R., et al. 2013. Cancer statistics. CA Cancer J Clin. 63:11.
47. Singh, S.K., et al. 2003. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63:5821.
48. Singh, S.K., et al. 2004. Identification of human brain tumour initiating cells. Nature. 432:396.
49. Takayama, T., et al. 2006. Colorectal cancer: genetics of development and metastasis. J Gastroenterol. 41:185-192.
50. Tan, M.H., et al. 2012. Specific kinesin expression profiles associated with taxane resistance in breast cancer. Breast Cancer Res Treat. 131(3):849–858.
51. Todaro, M., et al. 2010. Colon cancer stem cells: Promise of targeted therapy. Gastroenterology. 138:2151.
52. Uchida, N., et al. 2000. Direct isolation of human central nervous system stem cells. roc. Natl. Acad. Sci. U. S. A. 97:14720.
53. Vermeulen, L., et al. 2008. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA. 105:13427.
54. Viatour, P., et al. 2008. Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell. 3(4):416–428.
55. Violette, S., et al. 2002. Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of Bcl-2 and Bcl-XL in addition to Bax and p53 status. Int. J. Cancer. 98:498–504.
56. Visvader, J.E. & Lindeman G.J. 2008. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 8(10):755-768.
57. Walker, A.S., et al. 2014. Future directions for the early detection of colorectal cancer recurrence. J Cancer. 5:272.
58. Wang, S., et al. 2006. Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc Natl Acad Sci U S A. 103:1480.
59. Weigmann, A., et al. 1997. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc. Natl. Acad. Sci. U. S. A. 94:12425.
60. Yang, W., et al. 2014. Antioxidant signaling involving the microtubule motor KIF12 is an intracellular target of nutrition excess in beta cells. Developmental Cell. 31:202-214.
61. Yin, A.H., et al. 1997. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 90:5002.