簡易檢索 / 詳目顯示

研究生: 覺宗宏
Chueh, Tsung-Hung
論文名稱: 基因剃除血栓烷A2合成酶和血栓烷前列腺素接受器訊息對腎缺血再灌流引起之氧化傷害效益
Effects of Genetic Deletion of Thromboxane A2 Synthase and Thromboxane Receptor Signaling on Renal Ischemia/Reperfusion Induced Oxidative Stress
指導教授: 鄭劍廷
Chien, Chiang-Ting
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 65
中文關鍵詞: 細胞凋亡細胞自噬缺血/再灌流腎臟血栓烷A2合成酶血栓烷前列腺素受體細胞焦亡
英文關鍵詞: apoptosis, autophagy, ischemia/reperfusion, kidney, thromboxane A2 synthase, thromboxane prostanoid receptor, pyroptosis
DOI URL: http://doi.org/10.6345/NTNU202001423
論文種類: 學術論文
相關次數: 點閱:133下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我的研究目的是利用剔除「血栓烷A2合成酶/血栓烷A2/血栓烷前列腺素受體」(TXAS / TXA2 / TP)的基因,來阻斷它的信號傳導,檢驗是否可以減少小鼠的腎臟缺血/再灌注的損傷。「血栓烷A2合成酶/血栓烷A2/血栓烷前列腺素受體」(TXAS / TXA2 / TP)的正常生理功能,可促進血管收縮,以及血小板凝集,幫助人體在受傷時止血。但在許多病理情況下,會造成「血栓烷A2合成酶/血栓烷A2/血栓烷前列腺素受體」(TXAS / TXA2 / TP)過度活化,誘發氧化傷害,例如,心肌梗塞,肺高壓,子癲前症,器官移植,狼瘡腎炎,敗血性休克,腎絲球腎炎,以及各類血栓疾病。在以上的病理情況下,血栓烷A2合成酶(TXAS)活性會增強,刺激血栓烷A2(TXA2)釋放和血栓烷前列腺素受體(TP)活化,造成嚴重的血管收縮和氧化損傷。因此,本研究利用基因剔除「血栓烷A2合成酶/血栓烷A2/血栓烷前列腺素受體」(TXAS / TXA2 / TP)的訊號傳遞,期待瞭解更多關於腎臟缺血/再灌注損傷的病理機轉,並希望能在這樣的基礎上研究出治療方法。中醫藥有數千年的傳承,其中,活血化瘀藥的使用,在中醫治療腎臟病中,扮演重要的角色,但其中的現代藥理機轉,仍有待進一步研究。活血化瘀的效果,類似現代生理的血管擴張與抗凝血作用,與TXA2的效果相反。因此,本研究希望這次的實驗結果,可以在未來作為研究中醫活血化瘀藥物治療腎臟病的研究模型,以期揭開中醫神秘的面紗,並找出中醫藥在現代疾病的應用。
    本研究分別在以下四種基因型小鼠TXAS+/+TP+/+,TXAS–/–,TP–/–以及TXAS–/–TP–/–身上,評估了靜脈注射U46619(TXA2模擬物)和45分鐘腎缺血再灌注(I/R)所造成的的腎臟血流動力學變化和腎損傷。我檢驗了腎臟中TXAS和TP的基因表達狀況,血尿素氮(BUN)和肌酐酸,活性氧(ROS)的量,還有促炎性細胞因子和細胞死亡的病理生理機轉,包括I/R損傷下造成的的細胞凋亡,細胞自噬和細胞焦亡。
    實驗結果發現,在野生型的小鼠(TXAS+/+TP+/+)身上,腎臟的缺血/再灌流(I/R),增強了TXAS,TP的表現;也增強了發炎及氧化壓力相關的參數,包括細胞核中NF-κB,NADPH氧化酶gp91的表現;三種計畫性細胞死亡的參數,也有顯著增加,包括細胞凋亡(Bax / Bcl-2 / Caspase-3),細胞自噬(Beclin-1 / LC3 II),細胞焦亡Caspase-1 / gasdermin D / IL-1β)。而且,野生型小鼠中腎臟TXB2濃度,ROS含量,血中尿素氮,肌酐酸,在經過缺血/再灌流(I/R)之後,都有顯著上升。而能夠 擴張血管的eNOS在腎臟中的表達下降。
    在另外三種基因剔除小鼠中(TXAS–/–,TP–/–以及TXAS–/–TP–/–),所有的增強參數均顯著降低。在TXAS+/+TP+/+和TXAS–/–小鼠中,靜脈注射U46619顯著抑制了腎微循環並增強了gp91和Bax / Bcl-2;在TP–/–和TXAS–/–TP–/–,靜脈注射U46619,則沒有這種效果。腎臟的缺血再灌流,顯著降低了四組小鼠的腎臟微循環,但是跟野生型小鼠(TXAS+/+TP+/+)相比,TXAS–/–, TP–/– 和TXAS–/–TP–/–這三組小鼠,恢復至基準線腎血流量的時間顯著縮短。由以上可知,阻斷(TXAS / TXA2 / TP)信號傳導,可減弱I/R造成的促炎細胞因子增加。
    由本研究的結果可知,透過基因剔除來阻斷TXAS / TXA2 / TP信號傳導,可透過抗氧化,抗發炎,抗凋亡,抗自噬和抗焦亡的作用,對於缺血/再灌流造成的腎損傷產生保護作用。TXAS / TXA2 / TP信號傳遞路徑,主要的正常生理作用為促進血小板凝結,跟促進血管收縮。中醫的活血化瘀藥,常用於治療腎臟病。而這些活血化瘀中藥的效果,類似現代藥理作用中,促進血流增加與抗凝血的作用,與TXA2的作用相反。因此,在未來,我們可以利用本研究的動物模型來測試,中醫活血化瘀藥物治療腎臟病的機轉,是否與抑制TXAS / TXA2 / TP信號傳遞路徑有關。

    Aims: Enhancement of thromboxane A2 (TXA2) synthase (TXAS) activity, TXA2 release and thromboxane-prostanoid (TP) receptor activation leads to vasoconstriction and oxidative injury. We explored whether genetic deletion of TXAS/TXA2/TP signalling may reduce renal ischaemia/reperfusion (I/R) injury in mice.

    Methods: Renal haemodynamics and function were evaluated in TXAS+/+TP+/+ (wild type, WT), TXAS–/– (TXS–/–), TP–/– and TXAS–/–TP–/– (double knockout, dKO) mice in response to intravenous TXA2 mimetic-U46619 and 45-min renal ischaemia and 4-h reperfusion injury. We examined renal TXAS and TP expression, blood urea nitrogen (BUN) and creatinine, reactive oxygen species (ROS) amount, pro-inflammatory cytokines and pathophysiologic mechanisms, including apoptosis, autophagy and pyroptosis under I/R injury.

    Results: Renal I/R enhanced the levels of TXAS, TP, nuclear factor-κB, NADPH oxidase gp91, Bax/Bcl-2/caspase-3/apoptosis, Beclin-1/LC3-II/autophagy, caspase-1/gasdermin D/interleukin-1β/pyroptosis, renal thromboxane B2 (TXB2) concentration, ROS amount, plasma BUN, creatinine and TXB2 and decreased renal endothelial nitric oxide synthase expression in WT mice. All these enhanced parameters were significantly decreased in three knockout mice. Intravenous U46619 significantly decreased renal microcirculation and enhanced gp91 and Bax/Bcl-2 in WT and TXS–/– but not TP–/– and dKO mice. I/R significantly decreased renal microcirculation in all mice; however, the time for recovery to baseline renal blood flow level was significantly shortened in TXS–/–, TP–/–and dKO mice versus WT mice. Blockade of TXAS/TP signalling attenuated I/R-enhanced pro-inflammatory cytokine profile.

    Conclusion: Blockade of TXAS/TXA2/TP signalling confers renal protection against I/R injury through the actions of anti-oxidation, anti-inflammation, anti-apoptosis, anti-autophagy and anti-pyroptosis.

    致謝 i 中文摘要 iii ABSTRACT vi Abbreviation viii Contents ix Figure Contents xi Chapter 1. Introduction 1 1-1 Thromboxane A2 / Thromboxane A2 Synthase / Thromboxane-prostanoid (TP) receptor 1 1-2 Thromboxane A2 Synthase inhibitors and Thromboxane-prostanoid receptor antagonists 2 1-3 Thromboxane A2 Synthase inhibitors/ Thromboxane-prostanoid receptor inhibitors to treat kidney disease 3 1-4 Thromboxane A2-induced ROS production and eNOS dysfunction 3 1-5 Inhibition of Thromboxane A2 by Chinese medicine 5 1-6 Renal ischaemia/reperfusion (I/R) injury 6 1-7 Research Aims 8 Chapter 2. Materials and Methods 10 2-1 Animals 10 2-2 Renal I/R and U46619 infusion 12 2-3 Renal microcirculation determination 13 2-4 In vivo renal ROS detection 14 2-5 Histologic studies 15 2-6 Detection of autophagy, apoptosis and pyroptosis in I/R kidneys 16 2-7 Western blotting 17 2-8 Cytokine array 18 2-9 Statistical analysis 19 Chapter 3. Results 20 3-1 Blockade of TXAS/TP signalling reduces I/R-induced oxidative stress 20 3-2 U46619 reduces renal microcirculation and induces apoptosis and oxidative stress 21 3-3 Deleted TXAS/TP reduced inflammation, apoptosis, autophagy and pyroptosis 22 3-4 Blockade of TXAS/TP signalling reduced I/R-evoked ROS 24 3-5 Effect of blockade of TXAS/TP signalling on renal I/R-induced inflammatory cytokines 25 Chapter 4. Discussion and Conclusion 26 4-1 Discussion 26 4-2 Conclusion 32 4-3 Future work 33 References: 34 FIGURES AND FIGURE LEGENDS 44

    References:
    1. Hirata M, Hayashi Y, Ushikubi F, Yokota Y, Kageyama R, Nakanishi S, Narumiya S. Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature 1991;349:617-620

    2. Boffa JJ, Just A, Coffman TM, Arendshorst WJ. Thromboxane receptor mediates renal vasoconstriction and contributes to acute renal failure in endotoxemic mice. J Am Soc Nephrol 2004;15:2358–2365.

    3. Sakariassen KS, Alberts P, Fontana P, Mann J, Bounameaux H, Sorensen AS. Effect of pharmaceutical interventions targeting thromboxane receptors and thromboxane synthase in cardiovascular and renal diseases. Future Cardiol 2009;5: 479–493.

    4. Chiang CY, Chien CY, Qiou WY, Chang C, Yu IS, Chang PY, Chien CT. Genetic depletion of thromboxane A2/thromboxane-prostanoid receptor signalling prevents microvascular dysfunction in ischaemia/reperfusion injury. Thromb Haemost 2018;118:1982–1996.

    5. Coleman RA, Smith WL, Narumiya S. International union of pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 1994 46: 205–229.

    6. Catella F, Healy D, Lawson JA, FitzGerald GA. 11-dehydrothromboxane B2: a quantitative index of thromboxane A2 formation in the human circulation. Proc Natl Acad Sci USA 1986;83:5861–5865.

    7. Reilly MP, Delanty N, Roy L, Rokach J, Callaghan PO, Crean P, Lawson JA, FitzGerald GA. Increased formation of the isoprostanes IPF2α-I and 8-epi-prostaglandin F2α in acute coronary angioplasty: evidence for oxidant stress during coronary reperfusion in humans. Circulation 1997;96:3314–3320.

    8. McAdam BF, Mardini IA, Habib A, Burke A, Lawson JA, Kapoor S, FitzGerald GA. Effect of regulated expression of human cyclooxygenase isoforms on eicosanoid and isoeicosanoid production in inflammation. J Clin Invest 2000;105:1473–1482.

    9. Audoly LP, Rocca B, Fabre JE, Koller BH, Thomas D, Loeb AL, Coffman TM, FitzGerald GA. Cardiovascular responses to the isoprostanes iPF(2α)-III and iPE(2)-III are mediated via the thromboxane A2 receptor in vivo. Circulation 2000;101:2833–2840.

    10. Stahl RA, Thaiss F, Wenzel U, Schoeppe W, Helmchen U. A rat model of progressive chronic glomerular sclerosis: the role of thromboxane inhibition. J Am Soc Nephrol 1992;2:1568–1577.

    11. Dogné JM, Hanson J, Pratico D. Thromboxane, prostacyclin and isoprostanes: therapeutic targets in atherogenesis. Trends Pharmacol Sci 2005;26:639–644.

    12. Vågnes ØB, Iversen BM, Arendshorst WJ. Short-term ANG II produces renal vasoconstriction independent of TP receptor activation and TxA2/isoprostane production. Am J Physiol Renal Physiol 2007;293:F860–F867.

    13. Brien M, Larose J, Greffard K, Julien P, Bilodeau JF. Increased placental phospholipase A2 gene expression and free F2-isoprostane levels in response to oxidative stress in preeclampsia. Placenta 2017;55:54–62.

    14. Cyrus T, Ding T, Praticò D. Expression of thromboxane synthase, prostacyclin synthase and thromboxane receptor in atherosclerotic lesions: correlation with plaque composition. Atherosclerosis 2010;208:376–381.

    15. Zhang M, Song P, Xu J, Zou MH. Activation of NAD(P)H oxidases by thromboxane A2 receptor uncouples endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol 2011;31:125–132.

    16. Chien CT, Lee PH, Chen CF, Ma MC, Lai MK, Hsu SM. De novo demonstration and co-localization of free-radical production and apoptosis formation in rat kidney subjected to ischemia/reperfusion. J Am Soc Nephrol 2001;12:973–982.

    17. Chien CT, Chang TC, Tsai CY, Shyue SK, Lai MK. Adenovirus-mediated bcl-2 gene transfer inhibits renal ischemia/reperfusion induced tubular oxidative stress and apoptosis. Am J Transplant 2005;5:1194–1203.

    18. Yang CC, Yao CA, Yang JC, Chien CT. Sialic acid rescues repurified lipopolysaccharide-induced acute renal failure via inhibiting TLR4/PKC/gp91-mediated endoplasmic reticulum stress, apoptosis, autophagy, and pyroptosis signaling. Toxicol Sci 2014;141:155–165

    19. Perico N, Benigni A, Zoja C, Delaini F, Remuzzi G. Functional significance of exaggerated renal thromboxane A2 synthesis induced by cyclosporin A. Am J Physiol 1986;251:F581–F587.

    20. Bresnahan BA, Dufek S, Wu S, Lianos EA. Changes in glomerular thromboxane A2 receptor expression and ligand binding following immune injury. Kidney Int 1999;55:139–147.

    21. Garvin PJ, Niehoff ML, Robinson SM, Heisler T, Salinas-Madrigal L, Contis J, Solomon H. Evaluation of the thromboxane A2 synthetase inhibitor OKY-046 in a warm ischemia-reperfusion rat model. Transplantation 1996;61:1429–1434.

    22. Drouin A, Farhat N, Bolduc V, Thorin-Trescases N, Gillis MA, Villeneuve L, Nguyen A, Thorin E. Up-regulation of thromboxane A₂ impairs cerebrovascular eNOS function in aging atherosclerotic mice. Pflugers Arch 2011;462:371–383.

    23. Basili S, Pignatelli P, Tanzilli G, Mangieri E, Carnevale R, Nocella C, Di Santo S, Pastori D, Ferroni P, Violi F. Anoxia-reoxygenation enhances platelet thromboxane A2 production via reactive oxygen species-generated NOX2: effect in patients undergoing elective percutaneous coronary intervention. Arterioscler Thromb Vasc Biol 2011;31:1766–1771.

    24. Oates JC, Halushka PV, Hutchison FN, Ruiz P, Gilkeson GS. Selective cyclooxygenase-2 inhibitor suppresses renal thromboxane production but not proliferative lesions in the MRL/lpr murine model of lupus nephritis. Am J Med Sci 2011;341:101–105.

    25. Massberg S, Brand K, Grüner S, Page S, Müller E, Müller I, Bergmeier W, Richter T, Lorenz M, Konrad I, Nieswandt B, Gawaz M. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002;196:887–896.

    26. Hur M, Koo CH, Lee HC, Park SK, Kim MY, Kim WH, Kim JT, Bahk JH. Preoperative aspirin use and acute kidney injury after cardiac surgery: A propensity-score matched observational study. PLoS One 2017;12:e0177201.

    27. Yu IS, Lin SR, Huang CC, Tseng HY, Huang PH, Shi GY, Wu HL, Tang CL, Chu PH, Wang LH, Wu KK, Lin SW. TXAS-deleted mice exhibit normal thrombopoiesis, defective hemostasis, and resistance to arachidonate-induced death. Blood 2004;104:135–142.

    28. Patrono C. Biosynthesis and pharmacological modulation of thromboxane in humans. Circulation 1990;81(1 suppl 1): I12–I15.

    29. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005;73:1907–1916.

    30. Mederle K, Meurer M, Castrop H, Höcherl K. Inhibition of COX-1 attenuates the formation of thromboxane A2 and ameliorates the acute decrease in glomerular filtration rate in endotoxemic mice. Am J Physiol Renal Physiol 2015;309:F332–F340.

    31. Wagner M, Cadetg P, Ruf R, Mazzucchelli L, Ferrari P, Redaelli CA. Heme oxygenase-1 attenuates ischemia/reperfusion-induced apoptosis and improves survival in rat renal allografts. Kidney Int 2003;63:1564–1573.

    32. Asano K, Taniguchi S, Nakao A, Maruyama T, Watanabe T, Kurokawa K. Distribution of thromboxane A2 receptor mRNA along the mouse nephron segments. Biochem Biophys Res Commun 1996; 226:613–617.

    33. Bresnahan BA, Le Breton GC, Lianos EA. Localization of authentic thromboxane A2/prostaglandin H2 receptor in the rat kidney. Kidney Int 1996;49:1207–1213.

    34. Moss NG, Vogel PA, Kopple TE, Arendshorst WJ. Thromboxane-induced renal vasoconstriction is mediated by the ADP-ribosyl cyclase CD38 and superoxide anion. Am J Physiol Renal Physiol 2013;305:F830–F838.

    35. Lee DH, Cho HJ, Kang HY, Rhee MH, Park HJ. Total saponin from korean red ginseng inhibits thromboxane A2 production associated microsomal enzyme activity in platelets. J Ginseng Res 2012;36:40–46.

    36. Pignatelli P, Carnevale R, Di Santo S, Bartimoccia S, Sanguigni V, Lenti L, Finocchi A, Mendolicchio L, Soresina AR, Plebani A, Violi F. Inherited human gp91phox deficiency is associated with impaired isoprostane formation and platelet dysfunction. Arterioscler Thromb Vasc Biol 2011;31:423–434.

    37. Rong S, Hueper K ,Kirsch T, Greite R, Klemann C, Mengel M, Meier M, Menne J, Leitges M, Susnik N, Meier M, Haller H, Shushakova N, Gueler F. Renal PKC-ε deficiency attenuates acute kidney injury and ischemic allograft injury via TNF-α-dependent inhibition of apoptosis and inflammation. Am J Physiol Renal Physiol 2014;307: F718–F726.

    38. Thomas DW, Mannon RB, Mannon PJ, Latour A, Oliver JA, Hoffman M, Smithies O, Koller BH, Coffman TM. Coagulation defects and altered hemodynamic responses in mice lacking receptors for thromboxane A2. J Clin Invest 1998;102:1994–2001.

    39. Weight SC, Waller JR, Bradley V, Whiting PH, Nicholson ML. Interaction of eicosanoids and nitric oxide in renal reperfusion injury. Transplantation 2001;72:614–619.

    40. Myers SI, Wang L, Liu F, Bartula LL. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping. J Vasc Surg 2006;43:577–586.

    41. Voisin V, Declèves AE, Hubert V, Colombaro V, Giordano L, Habsch I, Bouby N, Nonclercq D, Caron N. Protection of Wistar-Furth rats against postischaemic acute renal injury: role for nitric oxide and thromboxane? Clin Exp Pharmacol Physiol 2014;41:911–920.

    42. Wang D, Chabrashvili T, Wilcox CS. Enhanced contractility of renal afferent arterioles from angiotensin-infused rabbits: roles of oxidative stress, thromboxane prostanoid receptors, and endothelium. Circ Res 2004;94:1436–1442.

    43. Takahashi K, Nammour TM, Fukunaga M, et al. Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 alpha, in the rat. Evidence for interaction with thromboxane A2 receptors. J Clin Invest 1992;90:136–141.

    44. Klausner JM, Paterson IS, Kobzik L, Rodzen C, Valeri CR, Shepro D, Hechtman HB. Vasodilating prostaglandins attenuate ischemic renal injury only if thromboxane is inhibited. Ann Surg 1989;209:219–224.

    45. Cyrus T, Yao Y, Ding T, Dogné JM, Praticò D. Thromboxane receptor blockade improves the antiatherogenic effect of thromboxane A2 suppression in LDLR KO mice. Blood 2007;109:3291–3296.

    46. Cong Y, Wang LM, Peng RJ, Zhao Y, Bai F, Yang C, Liu XL, Wang DQ, Ma BP, Cong YW. Timosaponin AIII induces antiplatelet and antithrombotic activity via Gq-mediated signaling by the thromboxane A2 receptor. Scientific Reports. 2016;6:38757.

    47. Katugampola SD, Davenport AP. Thromboxane receptor density is increased in human cardiovascular disease with evidence for inhibition at therapeutic concentrations by the AT1 receptor antagonist losartan. Br J Pharmacol. 2001;134:1385–1392.

    48. Giannarelli C, Urooj Zafar M, Badimon Juan J. Prostanoid and TP-receptors in atherothrombosis: is there a role for their antagonism? Thromb Haemost. 2010 104:949-54.

    49. Verstraete M and Zoldhelyi P. Novel antithrombotic drugs in development. Drugs 1995 49: 856-884.

    50. De Clerck F, Beetens J, Van de Water A, Vercammen E, Janssen PA. R68070: thromboxane A2 synthetase inhibition and thromboxane A2/prostaglandin endoperoxide receptor blockade combined in one molecule--II. Pharmacological effects in vivo and ex vivo. Thromb Haemost 1989 61: 43-49.

    51. Berrettini M, De Cunto M, Parise P, Grasselli S, Nenci GG. "In vitro" and "ex vivo" effects of picotamide, a combined thromboxane A2-synthase inhibitor and -receptor antagonist, on human platelets. Eur J Clin Pharmacol 1990 39: 495-500.

    52. Lianos EA, Bresnahan BA. Effect of thromboxane A2 inhibition and antagonism on prostaglandin and leukotriene synthesis in glomerular immune injury. J Lab Clin Med. 1999 134:478-82.

    53. Li PC, Yang CC, Hsu SP, Chien CT. Repetitive progressive thermal preconditioning hinders thrombosis by reinforcing PI3K/Akt–Hsp70/eNOS signaling. J Vasc Surg 2012 Epub ahead.

    下載圖示
    QR CODE