簡易檢索 / 詳目顯示

研究生: 蔡佳怡
Chia-Yi Tsai
論文名稱: 銀奈米離子壓電晶體感測器研製與應用
Preparation and Application of Piezoelectric Crystal Ion Sensor Based on Silver Nanoparticles
指導教授: 施正雄
Shih, Jeng-Shong
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
中文關鍵詞: 銀奈米壓電感測器界面活性劑
英文關鍵詞: Silver Nanoparticles, piezoelectric crystal sensor, surfactant
論文種類: 學術論文
相關次數: 點閱:332下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,將奈米材料應用到化學感測器,這個領域正蓬勃發展。因為奈米粒子具有不同於塊材的化學性質與物理性質,奈米微粒吸附劑具有高表面積,可以有效吸附及偵測各種分子。本研究利用銀奈米當塗佈物研製出離子壓電晶體感測器,此感測器用來研究銀奈米與鹼金屬、鹼土金屬以及過渡金屬間的吸附作用。
    本研究是以化學還原法製備銀奈米粒子,在冰浴環境下用硼氫化鈉當作還原劑來製備銀奈米,再利用Octadecylamine (ODA)當作界面活性劑將水相銀奈米轉到有機相,當作塗佈物。將塗佈銀奈米/PVC石英晶片作為研究銀奈米與各種金屬離子之間作用力,結果顯示金屬離子能被銀奈米所吸附並呈現不可逆的,可能為化學吸附現象。
    探討塗佈銀奈米的石英壓電感測器與金屬離子之間的pH及干擾物效應。銀奈米與各種金屬離子作用最適合pH為8.03,在不同有機溶劑中或干擾物中,不同金屬離子干擾情形也不同。干擾比較大的使得銀奈米與金屬離子結合能力降低。其中各種金屬離子的偵測下限為鉀離子4.78×10-6M,鎂離子6.78×10-6M,銅離子2.94×10-6M,鋅離子4.71×10-6M,鎳離子3.30×10-6M,鉻離子7.70×10-7M。
    將合成銀奈米粒子進行結構分析以及光譜分析,本研究利用TEM測出銀奈米粒子平均粒徑大小。並用SEM觀察塗佈在石英晶片上之奈米粒子表面的情形。本研究亦用光譜分析方面,探討水相中之銀奈米與各種金屬離子作用後的 UV-VIS光譜改變,可以發現到不同金屬離子與銀奈米作用後,吸收波長改變,溶液顏色也有所變化。
    本研究所研製出來的銀奈米離子壓電晶體感測器,可以偵測不同金屬離子及探討金屬奈米和各種離子間之作用力。此銀奈米壓電感測器對各種金屬離子有很好的靈敏度與偵測下限。
    關鍵字:壓電感測器、銀奈米、界面活性劑

    The application of nanomaterials in the field of chemical sensors has become a new,growing area of interest in recent years.Because nanomaterials features that differ from bulk materials. Because of their greater surface area compaired with bulk material, nanomaterials can be applied as efficient adsorbents in chemical sensor for detecting target analyte.A piezoelectric quartz crystal sensor based on coated silver nanoparticles was set up to study the interaction between silver nanoparticles and various metal cation.
    Silver nanoparticles were prepared by reduction of AgNO3 with NaBH4 in ice bath. Phase transfer of silver nanoparticles from aqueous to organic solutions using Octadecylamine (ODA) molecules as a surfactant. The partially irreversible response for cation was observed by desorption study,which implied that cation could be adsorbed on silver nanoparticlesby chemisorption.
    Effects of pH and interfering species on the responses of silver nanoparticles coated piezoelectric crystal sensor for cation was studied.Optimum pH was found to be at 8.03 . There were difference that silver nanoparticles interact with various cations in different organic solvents and interfering species.The much interference resulted in, the less response change of the piezoelectric crystal sensor of interaction.The detection limit of various cations were 4.78×10-6M for K+ ion, 6.78×10-6M for Mg2+ ion, 2.94×10-6M for Cu2+ ion, 4.71×10-6M for Zn2+ ion, 3.30×10-6M for Ni2+ ion, 7.7×10-7M for Cr3+ ion.
    Partical size of silver nanoparticles were measured by Transmission electron microscopy (TEM) and surface of coating silver nanoprticles on piezoelectric quartz crystalwas investigated by Scanning electron microscopy(SEM). The effects of cations on the absorption spectra of silver sols have been also investigated by the UV-VIS spectrometry.The interaction between silver nanoparticles and cations resulted in absorption wavelength red shift or blue shift and change in color of solution.

    In conclusion, silver nanoparticles-immobilized piezoelectric crystal sensor can be applied for study of the interaction between silver nanoparticles and cations.The ion PZ sensor for cations basedon silver nanoparticl was successfully to detect various cations.The PZ sensor for cations exhibited good selectiveity and detection limit in aqueous solution.

    Keyword: piezoelectric crystal sensor, silver nanoparticles, surfactant

    目錄 中文摘要 I 英文摘要 II 目錄 IV 圖目錄 VIII 表目錄 XIV 第一章、緒論 1 1-1 奈米科技簡介 1 1-2 奈米材料與奈米技術 2 1-2-1 奈米材料與奈米技術簡介 2 1-2-2 奈米材料的特性 5 1-2-3 奈米材料之應用 9 1-2-4奈米感測材料 10 1-2-4 奈米材料的形態 12 1-3 奈米粒子的製備方法 15 1-3-1奈米粒子的物理製備方法 15 1-3-2奈米粒子的化學製備方法 15 1-3-3 銀奈米粒子合成介紹 17 1-3-4金屬奈米粒子的光譜特性 17 1-4 奈米材料的結構 19 1-5奈米材料科學 21 1-6 奈米科技與生活 23 1-6-1 奈米科技與生活發展 25 1-7 奈米光學感測器(Nanomaterial optical sensors) 28 1-7-1 簡介 28 1-7-2吸收光譜型感測器 30 1-7-3光致發光感測器 32 1-7-4化學發光感測器 33 1-7-5電波干擾感測器 35 1-8壓電晶體 36 1-8-1壓電晶體之壓電性(38) 36 1-8-2 壓電材料 40 1-8-3石英振盪器 43 1-8-4石英振盪器的線路 50 1-8-5振盪頻率的量測 52 1-8-6石英微量天平(Quartz Crystal Microbalance,QCM) 54 1-8-7石英壓電晶體在分析化學領域上的應用 57 1-8-8壓電材料的智慧化應用例(62) 66 第二章、 實驗部分 71 2-1藥品及器材 71 2-2 石英晶體的處理 71 2-2-1 石英晶體表面塗佈液(coating solution) 72 2-2-2表面塗佈法 75 2-3 實驗系統 76 2-4實驗裝置及步驟 77 2-4-1銀奈米與金屬離子間吸附作用之研究 77 2-4-2 銀奈米和金屬離子離子吸附作用之研究 77 2-4-3石英壓電晶體靜相實驗系統 79 2-4-4石英壓電晶體動相實驗系統 80 2-5系統校正 81 第三章、結果與討論 82 3-1 銀奈米與金屬離子間的作用 82 3-1-1 銀奈米與鉀離子(K+)間的吸附關係 82 3-1-1.1 塗佈銀奈米石英晶體對鉀離子的感應 82 3-1-1.2 銀奈米偵測鉀離子的塗佈量效應 82 3-1-1.3 鉀離子的濃度效應 83 3-1-1.4鉀離子的吸附及脫附 83 3-1-1.5 對不同鹼金屬之感應訊號 83 3-1-2 銀奈米與鎂離子(Mg2+)間的吸附關係 92 3-1-2.1 塗佈銀奈米石英晶體對鎂離子的感應 92 3-1-2.2 銀奈米偵測鎂離子的塗佈量效應 92 3-1-2.3鎂離子的濃度效應 92 3-1-2.4鎂離子的吸附及脫附 93 3-1-2.5 對不同鹼土金屬之感應訊號 93 3-1-3 銀奈米與銅離子(Cu2+)間的吸附關係 99 3-1-3.1 塗佈銀奈米石英晶體對銅離子的感應 99 3-1-3.2銀奈米偵測銅離子的塗佈量效應 99 3-1-3.3 銅離子的濃度效應 100 3-1-3.4銅離子的吸附及脫附 100 3-1-4 銀奈米與鋅離子(Zn2+)間的吸附關係 105 3-1-4.1塗佈銀奈米石英晶體對鋅離子的感應 105 3-1-4.2 銀奈米偵測鋅離子的塗佈量效應 105 3-1-4.3 鋅離子的濃度效應 106 3-1-4.4鋅離子的吸附及脫附 106 3-1-5 銀奈米與鎳離子(Ni2+)間的吸附關係 111 3-1-5.1 塗佈銀奈米石英晶體對鎳離子的感應 111 3-1-5.2 銀奈米偵測鎳離子的塗佈量效應 111 3-1-5.3 鎳離子的濃度效應 112 3-1-5.4 鎳離子的吸附及脫附 112 3-1-6 銀奈米與鉻離子(Cr3+)間的吸附關係 117 3-1-6.1 塗佈銀奈米石英晶體對鉻離子的感應 117 3-1-6.2 銀奈米偵測鉻離子的塗佈量效應 117 3-1-6.3 鉻離子的濃度效應 117 3-1-6.4 鉻離子的吸附及脫附 118 3-2各種金屬離子偵測下限 123 3-2-1偵測下限 123 3-3 銀奈米與金屬離子作用條件的探討 125 3-2-1 pH值效應 125 3-3 銀奈米偵測金屬離子溶劑及干擾物的影響 132 3-3-1 溶劑與干擾物對鉀離子的影響 132 3-3-2 溶劑與干擾物對鎂離子的影響 132 3-3-3 溶劑與干擾物對銅離子的影響 132 3-3-4 溶劑與干擾物對鋅離子的影響 133 3-3-5 溶劑與干擾物對鎳離子的影響 133 3-3-5 溶劑與干擾物對鉻離子的影響 133 3-4 各種金屬離子之UV光譜研究 164 3-4-1 鉀離子之UV光譜探討 164 3-4-2 鎂離子之UV光譜探討 167 3-4-3 銅離子之UV光譜探討 167 3-4-4 鋅離子之UV光譜探討 167 3-4-5 鎳離子之UV光譜探討 175 3-4-6 鉻離子之UV光譜探討 175 第四章、結論 183 參考文獻 184

    參考文獻
    1. 尹邦耀, 奈米時代, 台北:五南, 2002
    2. J. H.Fendler,Nanoparticles and Nanostructured Film: Preparation,Characterization Application. New York: Wiley-VCH. 1998
    3. A. N. Goldstein, Handbook of Nanophase Materials. New York: Marcel Dekker. 1997
    4. A. S. Edelstein, R. C. Cammarata, Nanomaterials: Synthesis, Properties and Application. Bristol:Institute of Physics Publishing. 1996
    5. 馬遠發, 奈米科技, 台北:商周, 2002
    6. 莊萬發, 超微粒粒子理論應用, 台南:復漢, 1998
    7. 張立德, 奈米材料, 北京:化學工業, 2000
    8. 張立德; 牟季美, 奈米材料和奈米結構,北京:科學, 2000
    9. 張志焜; 崔作林, 奈米技術與奈米材料, 北京:國防工業, 2000
    10. 黃德歡, 改變世界的奈米技術, 台北:瀛舟, 2002
    11. 廖建勛, 奈米材料的發展動態, 化工資訊2月, 1998,20
    12. 蘇品書, 超微粒子材料技術, 嘉南:復漢, 1998
    13. 吳明立, 微乳化系統中製備雙金屬奈米粒子之研究, 國立成功大學化學工程研究所博士論文, 2001
    14. R. W. Siegel, E. Hu, M. C. Roco, WTEC panel report on nanostructure science and technology:R&D status and trends in nanoparticles, nanostructured materials, and nanodevices. Boston:Kluwer Academic.1999
    15.W. GÖpel,Biosens,Bioelectron.1998,13,723.
    16. 陳鎮華, 逆微胞系統中製備超微力粒子之研究, 國立成功大學化學工程研究所碩士論文, 1997
    17. 龐文琴, 超微細材料的製備,超微細材料與觸媒研討會論文集, 1996, 19
    18. 胡祥瑞,部花青素修飾金奈米粒子之吸收與螢光光譜,國立台灣大 學化學研究所碩士論文, 2003
    19. 陳東佑, 銅奈米粒子的表面修飾研究, 國立成功大學化學研究所碩士論文, 2001
    20. 賴岳生, 奈米銀/鈀微粒之化學合成與其特性分析之研究, 國立清華大學化學工程研究所碩士論文, 2003
    21. 龔建華, 你不可不知的奈米科技, 世茂, 2002
    22. http://myurl.com.tw/n4i5
    23. 呂世源, 奈米新世界, 科學發展, 2002
    24. Andrein; Khlobystov ; David A. Britz ; G. Andrew D. Briggs, Acc. Chem. Res, 2005, 38, 901-909
    25. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho,
    H. Dai, Nanotube Molecular Wires as Chemical Sensors, Science (Washington, DC) 2000, 287, 622-625.
    26. P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes, Science (Washington, DC) 2000, 287, 1801-1804.
    27. Y. Cui, Q.Q. Wei, H.K. Park, C.M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science (Washington,DC) 2001, 293, 1289-1292.
    28. F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner, Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays, Science (Washington, DC) 2001, 293, 2227-2231.
    29. R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles, Science (Washington, DC), 1997, 277, 1078-1081.
    30. J.J. Storhoff, R. Elghanian, R.C. Mucic, C.A. Mirkin, R.L. Letsinger, One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes, J. Am. Chem. Soc. 1998, 120, 1959-1964.
    31. R.A. Reynolds, C.A. Mirkin, R.L. Letsinger, Homogeneous, Nanoparticle-Based Quantitative Colorimetric Detection of Oligonucleotides, J. Am. Chem. Soc. 2000, 122, 3795-3796.
    32. J.J. Storhoff, A.A. Lazarides, R.C. Mucic, C.A. Mirkin, R.L. Letsinger, G.C. Schatz, What Controls the Optical Properties of DNA-Linked Gold Nanoparticle Assemblies, J. Am. Chem. Soc. 2000, 122, 4640-4650.
    33. T. Kobayashi, M. Haruta, M. Ando, Enhancing effect of gold deposition in the optical detection of reducing gases in air by metal oxide thin films, Sensors Actuators B, 1993, 14, 545-546.
    34. M. Ando, T. Kobayashi, M. Haruta, Humidity-sensitive optical absorption of Co3O4 film, Sensors Actuators B, 1996, 32, 157-160.
    35. L. Spanhel, M. Haase, H. Weller, A. Henglein, Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles, J. Am. Chem. Soc. 1987, 109, 5649-5655.
    36. G.H. Liu, Y.F. Zhu, X.R. Zhang, B.Q. Xu, Chemiluminescence Determination of Chlorinated Volatile Organic Compounds by Conversion on Nanometer TiO2, Anal. Chem. 2002, 74, 6279-6284.
    37. V.S.Y. Lin, K. Motesharei, K.P.S. Dancil, M.J. Sailor, M.R. Ghadiri, A Porous Silicon-Based Optical Interferometric Biosensor, Science (Washington, DC) 1997, 278, 840-843.
    38. Lu, C.; Czanderna, A. W. Applications of Piezoelectric Quartz Crystal Microbalance. Elsevier Science. New York. 1984.
    39. 吳朗, 電子陶瓷-壓電, 全欣科技圖書, 1994.
    40. 吳朗, 感測與轉換原理,元件與應用, 全欣科技圖書, 1992.
    41. Ikeda, T. Fundamentals of piezoelectricity. Oxford. Sci. Publ. 1990.
    42. Geddes, L. A.; Baker, L. E. Principle of Applied Biomedical Instrumentation.(3rd Ed.) John Wiley & Sons. New York. 1989.
    43. Martin, S. J.; Frye, G. C.; Ricco, A. J. Effect of Surface Roughness on the response of Thickness-Shear Mode Resonators in Liquids. Anal. Chem. 1993, 65, 2910-2922.
    44. 紀培錦, 新電子科技雜誌, 1989, 17, 196.
    45. 湯進德, 微電子界面技術, 全華科技圖書, 1984.
    46. 袁帝文; 黃柏鈞, 數位邏輯設計與分析, 全欣科技圖書, 1992.
    47. 江宗達; 鍾健文編譯, IBM PC與感測器介面的探討, 全華科技圖書, 1994.
    48. Hlavay, J.; Guilbault, G. G. Applications of the Piezoelectric Crystal Detector in Analytical Chemistry. Anal. Chem. 1977, 49, 1890-1898.
    49. Sauerbrey, G., Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung, Z Phys. A-Hadron. Nucl., 1959, 155, 206-222.
    50. William H. King, Jr. Piezoelectric Sorption Detector. Anal. Chem. 1964, 36(9), 1735-1739.
    51. Mandelis and Christofides. Physics, Chemistry and Technology of Solid State Gas Sensor Devices. John Wiley & Sons. New York, 1993.
    52. Ruys, D. P.; Andrade, J. F.; Guimarães, O. M. Mercury detection in air using a coated piezoelectric sensor. Analytica Chimica Acta. 2000, 404, 95-100.
    53. Chang, P.; Shih, J. S. Multi-channel piezoelectric quartz crystal sensor for organic vapours. Analytica Chimica Acta. 2000, 403, 39-48.
    54. Barkó, G.; Hlavay, J. Application of an artificial neural network (ANN) and piezoelectric chemical sensor array for identification of volatile organic compounds. Talanta. 1997, 44, 2237-2245.
    55. Bruckenstein, S.; Shay, M. Experimental Aspects of Use of the Quartz Crystal Microbalance in Solution. Electrochimica Acta. 1985, 30(10), 1295-1300.
    56. Thompson, M.; Kipling, A. L.; Duncan-Hewitt, W. C. Thickness-shear-mode Acoustic Wave Sensors in the Liquid Phase A Review. Analyst. 1991, 116, 881-890.
    57. Chang, H. C.; Yang, C. C.; Yeh, T. M. Detection of lipopolysaccharide binding peptides by the use of a lipopolysaccharide-coated piezoelectric crystal biosensor. Analytica Chimica Acta. 1997, 340, 49-54.
    58. Chu, X.; Jiang, J. H.; Shen, G. L.; Yu, R. Q. Simultaneous immunoassay using piezoelectric immunosensor array and robust method. Analytica Chimica Acta. 1996, 336, 185-193.
    59. Caruso, F.; Rodda, E.; Furlong, D. N.; Niikura, K. Quartz Crystal Microbalance Study of DNA Immobilization and Hybridization for Nucleic Acid Sensor Development. Anal. Chem. 1997, 69(11), 2043-2049.
    60. Gizeli, E.; Liley, M.; Lowe, C. R.; Vogel, H. Antibody Binding to a Functionalized Supported Lipid Layer: A Direct Acoustic Immunosensor. Anal. Chem. 1997 ,69(23), 4808-4813.
    61. Abad, J. M.; Pariente, F.; Hernández, L.; Lorenzo, E. A quartz crystal microbalance assay for detection of antibodies against the recombinant African swine fever virus attachment protein p12 in swine serum. Analytica Chimica Acta. 1998, 368, 183-189.
    62. 彭成鑑, 智慧系統專題, 科儀新知, 16(6), 1995, 18-29.
    63. 凌永健; 陳秋雲; 黃依萍,化學分析的偵測極限(上), 科儀新知, 1994, 16(1), 70-83

    QR CODE