簡易檢索 / 詳目顯示

研究生: 黃國賓
論文名稱: 結合二硫化鐵奈米晶體與聚(3-己基塞吩)、[6,6]苯基富勒烯丁酸甲酯之無機/有機及與氧化鋅奈米晶體之全無機混掺光電元件應用
指導教授: 陳家俊
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
中文關鍵詞: 太陽能電池二硫化鐵光電元件
論文種類: 學術論文
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    二硫化鐵(FeS2),能隙0.95eV之半導體,具有高吸光性,製備容易且地球含量豐富,其塊材(黃鐵礦)早期亦作為太陽能電池之材料。,在本論文中以溶液法製備花形FeS2奈米粒子,以及FeS2混掺過渡元素銅、鎳及鈷之奈米粒子,並利用其製作各種光電元件:(1) FeS2奈米粒子與氧化鋅(ZnO)奈米柱混掺之全無機太陽能電池,其中ZnO亦為熱門之光電元件材料,且有機高分子與無機材料相比,其使用壽命是個不小挑戰,因此全無機太陽能電池應為往後之趨勢。FeS2及ZnO均無污染無毒,對地球並無負擔,在環保意識高漲的今日,不失為一種環境接受性良好之綠色材料; (2) FeS2、P3HT與PCBM之無機奈米粒子/有機高分子混掺太陽電池,期望加入FeS2奈米粒子後,正好能補足紅光區之吸收,達成全日光波長均能轉換為電能之目標,在AM1.5G的模擬光源下,其開路電壓提高為0.5V,短路電流提高為6.1mA;(3) FeS2與P3HT之無機奈米粒子/有機高分子混掺太陽電池,經改善FeS2在氯仿中分散度後,並全程在乾燥箱內製造元件,在AM1.5G的模擬光源下,其光電轉換效率可達0.139%。

    總目錄 總目錄-----------------------------------------------------------------------------I 圖目錄--------------------------------------------------------------------------V 中文摘要------------------------------------------------------------------------VIII 英文摘要------------------------------------------------------------------------IX 第一章 緒論---------------------------------------------------------------------1 1-1 引言--------------------------------------------------------------------------1 1-2太陽能------------------------------------------------------------------------2 1-3太陽能電池的發展---------------------------------------------------------5 1-3-1無機太陽能電池-----------------------------------------------------5 1-3-2 有機太陽能電池----------------------------------------------------7 A. 光敏化染料太陽能電池----------------------------------8 B. 層疊式有機太陽能電池---------------------------------------9 C. 有機高分子太陽能電池- -----------------------------------------10 D. 有機高分子/無機奈米材料之混摻太陽能電池------11 1-4黃鐵礦(Pyrite)的基本性質-----------------------------------------------13 1-5 氧化鋅的基本性質-------------------------------------------------------16 第二章 原理--------------------------------------------------------------------18 2-1 穿透式電子顯微鏡(Transmission electron Microscopy) -----------18 2-2 X-ray繞射分析儀----------------------------------------------------------19 2-3 真空蒸鍍機------------------------------------------------------------21 2-4 太陽能電池的量測與分析-----------------------------------------------23 第三章 實驗--------------------------------------------------------------------25 3-1研究動機與目的-----------------------------------------------------------25 3-2合成原理--------------------------------------------------------------------26 A.FeS2奈米粒子-----------------------------------------------------26 B.ZnO奈米柱-----------------------------------------------------26 3-3 FeS2奈米粒子合成--------------------------------------------------------28 3-3-1藥品與儀器---------------------------------------------------------28 3-3-2實驗步驟------------------------------------------------------------29 A. FeS2奈米花之合成: ------------------------------------------29 B.球型FeS2粒子之合成: ---------------------------------------30 C.FeS2粒子混掺過渡元素之合成--------------------30 3-4 ZnO 奈米柱的成長------------------------------------------------------31 3-4-1 藥品與儀器----------------------------------------------------------31 3-4-2 實驗步驟------------------------------------------------------------32 A. 定電壓法-------------------------------------------------------32 B. 鍍金脈衝法-----------------------------------------------------33 3-5 FeS2奈米粒子在無機/有機混雜太陽能電池上的應用------33 3-5-1藥品與儀器---------------------------------------------------------33 3-5-2有機/無機混掺太陽能電池----------------------------------34 A. FeS2/P3HT混掺太陽能電池------------------------------34 B. FeS2/PCBM/P3HT混掺太陽能電池----------------------35 3-6 FeS2奈米粒子混雜ZnO奈米柱之全無機太陽電池----------------35 第四章 結果與討論------------------------------------------------------------36 4-1 FeS2掺雜過渡元素原子之合成----------------------------------36 4-1-1花型FeS2的合成-------------------------------------------------36 4-1-2 FeS2摻雜銅元素之合成------------------------------------------38 4-1-3 FeS2摻雜鎳元素之合成---------------------------------------40 4-1-4 FeS2摻雜鈷元素之合成---------------------------------------42 4-2 電沉積法成長之氧化鋅奈米柱-------------------------------46 4-2-1定電壓法--------------------------------------------46 4-2-2鍍金脈衝法------------------------------------------48 4-3 FeS2之熱重分析(TGA)量測-----------------------------------49 4-4 花形FeS2奈米粒子與ZnO奈米柱混掺全無機太陽能電池之元 件量測--------------------------------------------------------------------52 4-5 圓形FeS2、P3HT與PCBM之無機奈米粒子/有機高分子混掺 太陽電池之元件量測-----------------------------------------------------56 4-6 FeS2與P3HT之無機奈米粒子/有機高分子混摻混掺太陽電池 之性質量測-------------------------------------------------------------59 第五章 結論與未來展望---------------------------------------------62 參考文獻--------------------------------------------------------------------------63 圖目錄 圖1-1 太陽光譜圖----------------------------------------------------------------5 圖1-2 光敏化染料太陽能電池的運作原理---------------------------------9 圖1-3層疊式太陽能電池運作原理------------------------------------------10 圖1-4 黃鐵礦(Pyrite)-----------------------------------------------------------13 圖1-5 Pyrite晶格結構圖--------------------------------------------------------15 圖1-6 FeS2能帶結構圖---------------------------------------------------------15 圖1-7 ZnO的晶體結構---------------------------------------------------------17 圖2-1 穿透式電子顯微鏡JEOL-JEM-2000FX-----------------------------19 圖2-2 穿透式電子顯微鏡示意圖--------------------------------------------19 圖2-3 XRD基本原理----------------------------------------------------------20 圖2-4 真空蒸鍍機示意圖-----------------------------------------------------22 圖2-5 真空蒸鍍機--------------------------------------------------------------22 圖2-6 元件各項參數及I-V特性曲線的關係圖---------------------------24 圖4-1花型FeS2之HR-TEM圖-------------------------------------------------37 圖4-2 花型FeS2之XRD繞射圖譜------------------------------------------37 圖4-3 CuFeS2之TEM圖-------------------------------------------------------38 圖4-4 CuFeS2之XRD圖譜-----------------------------------------------------39 圖4-5 CuFeS2 之EDX圖譜----------------------------------------------------39 圖4-6 NiFeS2之TEM圖-------------------------------------------------------40 圖4-7 NiFeS2之XRD繞射圖譜----------------------------------------------41 圖4-8 NiFeS2 之EDX圖譜---------------------------------------------------41 圖4-9 CoFeS2之TEM圖(合成時間1小時)-------------------------------43 圖4-10 CoFeS2之TEM圖(合成時間24小時)---------------------------43 圖4-11 CoFeS2之XRD繞射圖譜------------------------------------------44 圖4-12 CoFeS2之EDX圖譜------------------------------------------------44 圖4-13 摻雜過渡元素FeS2之UV吸收圖---------------------------------45 圖4-14 定電壓法(-1伏特,3小時)氧化鋅之SEM圖---------------------46 圖4-15 定電壓法(-2伏特,3小時)氧化鋅之SEM圖---------------------46 圖4-16 定電壓法(-3伏特,3小時)氧化鋅之SEM圖---------------------47 圖4-17 定電壓法(-2伏特,1小時)氧化鋅之SEM圖---------------------47 圖4-18 鍍金脈衝法成長氧化鋅之SEM圖--------------------------------48 圖4-19 未鍍金TIO脈衝法成長氧化鋅之SEM圖-----------------------49 圖4-20 貴重金屬層對成長氧化鋅奈米柱之影響------------------------49 圖4-21 FeS2與ZnO之熱重分析圖----------------------------------------51 圖4-22 FeS2與ZnO在各溫度下重量散失速率圖---------------------51 圖4-23 FeS2/ZnO混掺光電元件各層間之相對能帶位置圖----------53 圖4-24 FeS2/ZnO混掺光電元件結構圖----------------------------------53 圖4-25 定電壓法ZnO奈米柱混掺FeS2層之SEM圖------------------54 圖4-26 定電壓法之ZnO與FeS2混掺全無機太陽電池I-V特性圖--54 圖4-27 鍍金脈衝法ZnO奈米柱混掺FeS2層之SEM圖---------------55 圖4-28 鍍金脈衝法之ZnO與FeS2混掺全無機太陽電池I-V特性圖-55 圖4-29 FeS2/P3HT混掺光電元件各層間之相對能帶位置-------------57 圖4-30 FeS2/PCBM/P3HT混掺光電元件結構圖--------------------------57 圖4-31 FeS2/PCBM/P3HT無機粒子/有機高分子混摻太陽電池之I-V 特性曲線量測---------------------------------------------------58 圖4-32 FeS2/P3HT混掺光電元件各層間之相對能帶位置-------------60 圖4-33 FeS2/P3HT混摻光電元件結構圖-----------------------------------60 圖4-28 FeS2/P3HT無機粒子/有機高分子混掺太陽電池之I-V特性曲 線量測------------------------------------------------------------------------61 圖4-29元件於不同波長光源時之外部量子效率-------------------------61 表4-1 CuFeS2 之EDX各元素含量分析--------------------------------39 表4-2 CuFeS2 之EDX各元素含量分析---------------------------------41 表4-3 CuFeS2 之EDX各元素含量分析---------------------------------44 表4-4 PCBM/P3HT/ FeS2混摻材料元件效率---------------------------58 表4-5 P3HT/ FeS2混摻材料元件效率------------------------------------60

    1. (a)A. P. Alivisatos Science 1996, 271, 933. (b) C. C. Chen, A. B. Herhold, C. S. Johnson, and A. P. Alivisatos Science 1997, 276, 398.
    2. Y. D. Glinka, S. H. Lin, L. P. Hwang, Y. T. Chen, and N. H. Tolk Phys. Rev. B 2001, 64, 085421.
    3. (a) J. Joo, H. B. Na, T. Yu, J. H. Yu, Y. W. Kim, F. Wu, J. Z. Zhang, and T. Hyeon J. Am. Chem. Soc. 2003, 125, 11100. (b) Y. D. Yin, M. R. Robert, C. K. Erdonmez, S. Hughes, G. A. Somorjai, and A. P. Alivisatos Science 2004, 304, 711. (c) A. Ghezelbash, and B. A. Korgel Langmuir 2005, 21, 9451. (d) K. T. Yong, Y. Sahoo, K. R. Choudhury, M. T. Swihart, J. R. Minter, and P. N. Prasad Chem. Mater 2006, 18, 5965. (e) X. H. Chen, and R. Fan Chem. Mater. 2001, 13, 802. (f) T. Kaneko, K. Tazawa, T. Koyama, K. Satou, K. Shimasaki, and Y. Kageyama Energy & Fuels 1998, 12, 897.
    4. N. S. Lewis Science 2007, 315, 798.
    5. R. D. Schaller, M. A. Petruska, and V. I. Klimov Appl. Phys. Lett. 2005, 87, 253102.
    6. B. O'Regan, and M.Grätzel Nature 1991, 353, 737.
    7. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P.D. Yang Nature Materials 2005, 4, 455.
    8. A.. Yakimov, S. R. Forrest, Appl. Phys Lett. 2002,80,1667
    9. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl Science 1992, 258, 1474.
    10. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger Science 1995, 270, 1789.
    11. C. Y. Kwong, A. B. Djurisic, P. C. Chui, K. W. Cheng, and W. K. Chan Chem. Phys. Lett. 2004, 384, 372.
    12. W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen J. Mater. Chem. 2005, 15, 2985.
    13. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos Science 2002, 295, 24254.
    14. I. Gur, N. A. Fromer, C. P. Chen, A. G. Kanaras, and A. P. Alivisatos Nano Lett. 2007, 7, 409.
    15. S.Coe, W. K. Woo, M. Bawendi, and V. Bulovi Nature 2002 420 800.
    16. A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Bilker, M. Bronold, C. Hpfner and H. Tributsch Solar Energy Materials and Solar Cells 1993, 29, 289.
    17. (a) J. P. Wilcoxon, P. P. Newcomer and G. A. Samara Solid State Communications 1996, 98, 581. (b) P. Gao, Yi Xie, L. Ye, Y. Chen, and Q. Guo Crystal Growth & Design 2006, 6, 584.
    18. (a) B. Ouertani, J. Ouerfelli, M. Saadoun, B. BessaRs, H. Ezzaouia, and J.C. Bernede Materials Characterization 2005, 54, 431. (b) S. W. Lehner, K .S. Savage, and J. C. Ayers Journal of Crystal Growth 2006, 286, 306.
    19. K. L. Chopra and S. R. Das, Thin film Solar Cells,1983.
    20. H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A.Hagfeldt, S. -E. Lindquist, High Light-to-Energy Conversion,2002.
    21. I. Gur, N. A. Fromer, M. L. Geier, A. P. Alivisatos, Science 2005, 310,462.

    22. (a) X. Y. Chen, Z. G. Wang, X. Wang, J. X. Wan, J. W. Liu, and Y. T. Qian Inorg. Chem. 2005, 44, 951 (b) H. Duana, and Y. F. Zhenga, Y. Z. Dong, X. G. Zhang, and Y. F. Sun Materials Research Bulletin 2004, 39, 1861.
    23. (a) B. Ouertani, J. Ouerfelli, M. Saadoun, B. Bessais, H. Ezzaouia, and J. C. Bernede Materials Characterization 2005, 54, 431. (b) S. W. Lehner, K. S. Savage, and J. C. Ayers Journal of Crystal Growth 2006, 286, 306. (c) A. Ennaoui, G. Schlichth6rl, S. Fiechter, and H. Tributsch Solar Energy Materials and Solar Cells 1992, 25, 169. (d) A. Ennaoui, S. Fiechter, H. Goslowsky, and H. Tributsch J. Electrochem. Soc. Electrochemical Science And Technology 1985, 132, 1579.
    24. (a) S. Nakamura, and A. Yamamoto Solar Energy Materials & Solar Cells 2001, 65, 79. (b) Y. Z. Dong, Y. F. Zheng, H. Duan, Y. F. Sun, and Y. H. Chen Materials Letters 2005, 59, 2398.
    25. (a) W. Luo, Y. Xie, K. Zhu, and F. Zheng Nanotechnology 2006, 17, 5702. (b) D. G. Wan, Y. T. Wang, Z. P. Zhou, G. Q. Yang, B. Y Wang, and L. Wei Materials Science and Engineering B 2005, 122, 156.
    26. (a)L.Vayssieres, K. Keis, A. Hagfeldt, S.E. Lindquist, Chem.Mater. 2001, 13, 4395.(b) Yu, H. D.; Zhang, Z. P.; Han, M. Y.; Hao, X. T.; Zhu, F. R. J. Am.Chem. Soc. 2005, 127, 2378.(c) Y. Sun, G.M. Fuge, N.A. Fox, D.J. Riley, M.N. Ashfold, AdV. Mater. 2005, 17, 2477.
    27. (a) S. Peulon, D. Lincot, J. Electrochem. Soc. 1998, 145, 864.(b)M. Izaki, T. Omi, Appl. Phys. Lett. 1996, 68, 2439.
    28. L.F. Xu, Q. Liao, J.P. Zhang, X.C. Ai and D.S. Xu J. Phys. Chem. C 2007, 111, 45492
    29. Z. Zhou, W. Peng, S. Ke, H. Deng, Journal of Materials Processing Technology,1999,89.415
    30. S. Minoru, T. Norio, U. Yoshikazu, O. Shigeo, S. Hidetoshi, Japanese Journal of Applied Phtsics,1999,38,L586
    31. M. H. Hwang, Science, 2001, 292, 1897
    32. Y.W. Wang, L.D. Zhang, G.Z. Wang, X.S. Peng, Z.Q. Chu, Lianf, Journal of Crystal Growth,2002,234,171
    33. P. Yanf, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.-J. Choi, Advance Functional Materials, 2002, 12, 323
    34. S.C. Lyu, Y.R. Zhang, Hyun; H.J. Lee, H.W. Shim, E.K. Suh, C.J. Lee, Chemical Physics Letters,2002,363,134
    35. S.Y. Li, C.Y. Lee, T.Y. Tseng, Journal of Crystal Growth, 2003, 247, 357
    36. M.J. Zgeng, L.D. Zhang, G.H. Li, W.Z. Shen, Chemical Physics Letters, 2002, 363, 123
    37. Y.C. Wang, Electrochemical and Solid-State letters, 2002, 5, C53
    38. L. Vayssieres, K. Keis, A. Hagfeldt, S.E. Lindquist, Chemistry of Materials, 2001, 13, 4395
    39. M. J. Zheng, L.D. Zhang, G.H. Li, W.Z. Shen, Chemical Physics Letters, 2002, 363, 123
    40. 林志誠 成大碩士論文,以脈衝式電流電化學沉積法成長氧化鋅奈米柱之研究,2006.
    41. A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Bilker, M. Bronold, C. Hpfner and H. Tributsch, Solar Energy Materials and Solar Cells 1993, 29, 289
    42. J.B. Christoph ; N.S. Sariciftci; J.C. Hummelen, Advanced Functional Materials, 2001, 11, 15
    43. G. Li; V. Shrotriya; J. Huang; Y. Yao, T. Moriarty; K. Emery; Y. Yang, Nature materials,2005,

    無法下載圖示 本全文未授權公開
    QR CODE