研究生: |
邱煜程 Chiu, Yu-Cheng |
---|---|
論文名稱: |
動作意象與虛擬實境棒球揮擊運動學分析 The kinematic analysis of baseball swing in motor imagery and virtual reality batting tasks |
指導教授: |
相子元
Shiang, Tzyy-Yuang |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 關節角度變化 、揮棒動作結果 、頭戴式顯示器 |
英文關鍵詞: | joint angle variation, swinging performance, head-mounted display |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DAP.005.2018.F03 |
論文種類: | 學術論文 |
相關次數: | 點閱:159 下載:22 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技進步,棒球揮擊模擬訓練也發展出許多不同的方式,從傳統的拋球揮擊、動作意象,到影片投影以及現今的虛擬實境技術,運動訓練更加科技化,然而這些不同情境的模擬訓練可能存在動作上的差異,因此本研究企圖以動作分析的觀點了解在各訓練情境間,揮擊外角、中間和內角球路時,人體運動學參數的變化以及在動作上有何種改變。實驗招募10名大專公開一、二級棒球選手,進行拋球揮擊、動作意象、影片投影與虛擬實境之揮棒。以二因子重複量數變異數分析,比較情境與位置間的關節角度差異,並將空間中棒頭軌跡投影在實驗室座標平面上。結果顯示虛擬實境在動作準備期的骨盆內旋與上半身左旋角度顯著高於所有情境,影片投影也顯著高於其它情境,但影片投影在揮擊不同位置的球之擊球瞬間,雙側手肘屈曲角度與身體旋轉角度沒有差異;拋球揮擊在揮擊中間球之擊球瞬間,雙側手肘屈曲角度顯著高於所有情境,且棒頭軌跡在擊球後有較向前與向外的情形;動作意象在擊球瞬間的前腳屈曲角度顯著高於拋球揮擊與影片投影。本結果認為使用虛擬實境揮棒,在準備動作上有較佳的模擬投手投球動作效果,影片投影也有相似的效果,但無法反應擊球瞬間揮擊不同位置的球之動作變化;拋球揮擊在擊球瞬間較多的手肘彎曲為面對真實球路接近身體的動作反應,且真實擊中球的過程有助於揮棒時的棒頭延伸;以動作意象進行揮棒,擊球瞬間的前膝會有較為彎曲且延伸較少的情形。本研究認為虛擬實境有較好的模擬投手投球動作效果,但在擊球動作的反應上仍與實際拋球打擊有所差異,建議未來在運動訓練的實務上,能加入擊中球的撞擊效果,能有助於擊球後的棒頭延伸。
With the advancement of technology, baseball swing simulation training system has also developed in many different ways, from toss batting, motor imagery, to film projection and virtual reality, making sports training more technological. However, there may be difference in the movement among these simulated training. Thus, this study attempts to understand the changes in the kinematic parameters of the human body during the swing of the middle as well as outside and inside corners from the perspective of motion analysis. This study recruited 10 college baseball players to perform baseball swing using toss batting, motor imagery, film projection, and virtual reality. The difference in joint angle between each condition was analyzed by two-way analysis of variance, and the bat head trajectory was projected on the laboratory coordinate plane. The results showed that the pelvic internal rotation and the upper body left rotation angles during the preparation period under virtual reality were significantly higher than all other conditions, and the film projection was also significantly higher than other situations, but there was no difference between bilateral elbow and body rotation angles among different batting zone under film projection; the bilateral elbow flexion angle at the ball contact under toss bating was significantly higher than all other conditions, and the bat head trajectory revealed a more forward and outward situation after the real impact; the lead knee flexion angle at the ball contact under motor imagery was significantly higher than the toss batting and film projection. These results indicated that virtual reality is the best way to stimulate pitcher’s pitching motion, the film projection also has a similar effect, but it cannot respond to the action of swing in different position; the bilateral elbow movement with more flexion under toss bating is the action response facing the real inside ball, and the process of actually hitting the ball helps to extend the bat. This study suggests that the virtual reality training system has a better effect to simulate pitcher pitching, but the reaction of the batting movement is still different from the toss batting task.
季力康 (1996)。意象訓練有助於提升戰績(上)。中華棒球,52,82-84。
陳淑滿、葉志仙 (2000)。棒球運動的心理訓練。大專體育,50,97-101。
吳唯平、許年瑩、王令儀 (2011)。Wii fit瑜伽遊戲之虛擬實境功能應用在靜態平衡訓練之研究。運動教練科學,23,43-56。
Battaglia, C., D'Artibale, E., Fiorilli, G., Piazza, M., Tsopani, D., Giombini, A., . . . di Cagno, A. (2014). Use of video observation and motor imagery on jumping performance in national rhythmic gymnastics athletes. Human Movement Science, 38, 225-234. doi:10.1016/j.humov.2014.10.001
Bideau, B., Multon, F., Kulpa, R., Fradet, L., Arnaldi, B., & Delamarche, P. (2004). Using virtual reality to analyze links between handball thrower kinematics and goalkeeper's reactions. Neuroscience Letters, 372(1-2), 119-122. doi:10.1016/j.neulet.2004.09.023
Brault, S., Bideau, B., Kulpa, R., & Craig, C. M. (2012). Detecting deception in movement: The case of the side-step in rugby. PLoS One, 7(6). doi:10.1371/journal.pone.0037494
Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., . . . Freund, H. J. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. The European Journal of Neuroscience, 13(2), 400-404.
Chiarovano, E., Wang, W., Reynolds, P., & MacDougall, H. G. (2018). Imbalance: Objective measures versus subjective self-report in clinical practice. Gait & Posture, 59, 217-221. doi:10.1016/j.gaitpost.2017.10.019
de Bruin, E. D., Schoene, D., Pichierri, G., & Smith, S. T. (2010). Use of virtual reality technique for the training of motor control in the elderly. Some theoretical considerations. Zeitschrift fur Gerontologie und Geriatrie, 43(4), 229-234. doi:10.1007/s00391-010-0124-7
Deutsch, J. E., & Mirelman, A. (2007). Virtual reality-based approaches to enable walking for people poststroke. Topics in Stroke Rehabilitation, 14(6), 45-53. doi:10.1310/tsr1406-45
Dowling, B., & Fleisig, G. S. (2016). Kinematic comparison of baseball batting off of a tee among various competition levels. Sports Biomechanics, 15(3), 255-269. doi:10.1080/14763141.2016.1159320
Escamilla, R. F., Fleisig, G. S., DeRenne, C., Taylor, M. K., Moorman, C. T., 3rd, Imamura, R., . . . Andrews, J. R. (2009). A comparison of age level on baseball hitting kinematics. Journal of Applied Biomechanics, 25(3), 210-218.
Gray, R. (2017). Transfer of training from virtual to real baseball batting. Frontiers in Psychology, 8, 2183. doi:10.3389/fpsyg.2017.02183
Guillot, A., Desliens, S., Rouyer, C., & Rogowski, I. (2013). Motor imagery and tennis serve performance: the external focus efficacy. Journal of Sports Science & Medicine, 12(2), 332-338.
Holmes, P. S., & Collins, D. J. (2001). The PETTLEP approach to motor imagery: A functional equivalence model for sport psychologists. Journal of Applied Sport Psychology, 13(1), 60-83.
Holmes, P. S., & Wright, D. J. (2017). Motor cognition and neuroscience in sport psychology. Current Opinion in Psychology, 16, 43-47. doi:10.1016/j.copsyc.2017.03.009
Im, H., Ku, J., Kim, H. J., & Kang, Y. J. (2016). Virtual reality-guided motor imagery increases corticomotor excitability in healthy volunteers and stroke patients. Annals of Rehabilitation Medicine, 40(3), 420-431. doi:10.5535/arm.2016.40.3.420
Inkster, B., Murphy, A., Bower, R., & Watsford, M. (2011). Differences in the kinematics of the baseball swing between hitters of varying skill. Medicine and Science in Sports and Exercise, 43(6), 1050-1054. doi:10.1249/MSS.0b013e318203626a
Katsumata, H., Himi, K., Ino, T., Ogawa, K., & Matsumoto, T. (2017). Coordination of hitting movement revealed in baseball tee-batting. Journal of Sports Sciences, 35(24), 2468-2480. doi:10.1080/02640414.2016.1275749
Kim, A., Darakjian, N., & Finley, J. M. (2017). Walking in fully immersive virtual environments: an evaluation of potential adverse effects in older adults and individuals with Parkinson's disease. Journal of Neuroengineering and Rehabilitation, 14(1), 16. doi:10.1186/s12984-017-0225-2
Krane, V., & Williams, J. (2006). Psychological characteristics of peak performance. Applied Sport Psychology: Personal Growth to Peak Performance, 5, 207-227.
Martinho, N. M., Silva, V. R., Marques, J., Carvalho, L. C., Iunes, D. H., & Botelho, S. (2016). The effects of training by virtual reality or gym ball on pelvic floor muscle strength in postmenopausal women: a randomized controlled trial. Brazilian Journal of Physical Therapy, 20(3), 248-257. doi:10.1590/bjpt-rbf.2014.0148
Mirelman, A., Maidan, I., & Deutsch, J. E. (2013). Virtual reality and motor imagery: promising tools for assessment and therapy in Parkinson's disease. Movement Disorders, 28(11), 1597-1608. doi:10.1002/mds.25670
Mirelman, A., Maidan, I., Herman, T., Deutsch, J. E., Giladi, N., & Hausdorff, J. M. (2011). Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson's disease? The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 66(2), 234-240. doi:10.1093/gerona/glq201
Nelson, J., Czech, D. R., Joyner, A. B., Munkasy, B., & Lachowetz, T. (2008). The effects of video and cognitive imagery on throwing performance of baseball pitchers: A Single subject design. The Sport Journal, 11, 1-23.
Neuman, B., & Gray, R. (2013). A direct comparison of the effects of imagery and action observation on hitting performance. Movement & Sport Sciences-Science & Motricité(79), 11-21.
Olsson, C. J., Jonsson, B., Larsson, A., & Nyberg, L. (2008). Motor representations and practice affect brain systems underlying imagery: an fMRI study of internal imagery in novices and active high jumpers. The Open Neuroimaging Journal, 2, 5-13. doi:10.2174/1874440000802010005
Pataky, T. C., & Lamb, P. F. (2017). Effects of physical randomness training on virtual and laboratory golf putting performance in novices. Journal of Sports Sciences, 1-8. doi:10.1080/02640414.2017.1378493
Seif-Barghi, T., Kordi, R., Memari, A. H., Mansournia, M. A., & Jalali-Ghomi, M. (2012). The effect of an ecological imagery program on soccer performance of elite players. Asian Journal of Sports Medicine, 3(2), 81-89.
Stinson, C., & Bowman, D. A. (2014). Feasibility of training athletes for high-pressure situations using virtual reality. IEEE Transactions on Visualization and Computer Graphics, 20(4), 606-615. doi:10.1109/tvcg.2014.23
Tabuchi, N., Matsuo, T., & Hashizume, K. (2007). Bat speed, trajectory, and timing for collegiate baseball batters hitting a stationary ball. Sports Biomechanics, 6(1), 17-30. doi:10.1080/14763140601058409
Thomas, J. S., France, C. R., Applegate, M. E., Leitkam, S. T., Pidcoe, P. E., & Walkowski, S. (2016). Effects of visual display on joint excursions used to play virtual dodgeball. JMIR Serious Games, 4(2), e16. doi:10.2196/games.6476
Trombetta, M., Bazzanello Henrique, P. P., Brum, M. R., Colussi, E. L., De Marchi, A. C. B., & Rieder, R. (2017). Motion Rehab AVE 3D: A VR-based exergame for post-stroke rehabilitation. Computer Methods and Programs in Biomedicine, 151, 15-20. doi:10.1016/j.cmpb.2017.08.008
Yeh, S. C., Lee, S. H., Chan, R. C., Wu, Y., Zheng, L. R., & Flynn, S. (2017). The efficacy of a haptic-enhanced virtual reality system for precision grasp acquisition in stroke rehabilitation. Journal of Healthcare Engineering, 2017, 9840273. doi:10.1155/2017/9840273