簡易檢索 / 詳目顯示

研究生: 黃羿瑄
Huang, I-Hsuan
論文名稱: 有氧運動前增補咖啡因對男女性高血壓患者運動後血壓及脈波傳導速率之影響
Effects of Caffeine Supplementation Before Aerobic Exercise on Post-Exercise Blood Pressure and Pulse Wave Velocity in Hypertensive Men and Women
指導教授: 王鶴森
Wang, Ho-Seng
口試委員: 王鶴森
Wang, Ho-Seng
吳慧君
Wu, Huey-June
陳勇志
Chen, Yung-Chih
口試日期: 2025/01/14
學位類別: 碩士
Master
系所名稱: 體育與運動科學系
Department of Physical Education and Sport Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 60
中文關鍵詞: 性別比較運動後低血壓耐力運動心血管疾病
英文關鍵詞: sex differences, post-exercise hypotension, endurance exercise, cardiovascular disease
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202500223
論文種類: 學術論文
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景:高血壓是導致心血管疾病的主要危險因子,有氧運動對降低血壓與脈波傳導速率有益,但運動前增補咖啡因可能抵銷健康成人運動後低血壓 (Post Exercise Hypotension, PEH) 的效益,且性別在血壓調控、心血管風險與咖啡因敏感性也可能存在差異。目的:探討男、女性高血壓患者在有氧運動前增補咖啡因對運動後低血壓及肱踝脈波傳導速率 (brachial-ankle pulse wave velocity, baPWV) 的影響。方法:招募20名無規律運動、無咖啡因攝取習慣且未服用藥物的高血壓患者 (10名男性、10名女性;33.7 ± 8.4歲,收縮壓139.8 ± 9.2 mmHg,舒張壓87.3 ± 10.9 mmHg),以雙盲、重複量數及平衡次序之方式進行每公斤體重3毫克之咖啡因 (CAF) 或安慰劑 (PLA) 膠囊增補處理後休息30分鐘,接續進行30分鐘,強度為70% 儲備心率的跑步機運動,並於基準值、運動前、運動後30、60、90及120分鐘進行血壓、baPWV測量,同時採集血液,分析內皮型一氧化氮合成酶 (eNOS) 及內皮素-1 (ET-1)。結果:性別、處理與時間三因子對血壓、baPWV及血液指標無顯著交互作用。僅處理與時間因子在收縮壓、舒張壓及平均動脈壓的交互作用達顯著 (p < .05),咖啡因處理的收縮壓與平均動脈壓在運動後30、60及90分鐘皆顯著高於安慰劑處理,舒張壓則是在運動後30與60分鐘顯著高於安慰劑處理;另外,踝肱血壓指數 (ABI)、baPWV及血液指標 eNOS 與 ET-1 的交互作用皆未達顯著。結論:有氧運動前增補每公斤體重 3 毫克的咖啡因會顯著提升高血壓患者的血壓及脈波傳導速率,並抵消運動後的降壓效益,然而,單次運動後並未造成baPWV的顯著下降,且上述效應在性別間無明顯差異。

    Background: Hypertension is a major cardiovascular risk factor. While aerobic exercise reduces blood pressure (BP) and pulse wave velocity (PWV), pre-exercise caffeine supplementation may offset the benefits of post-exercise hypotension (PEH) in healthy adults. Sex differences in BP regulation and caffeine sensitivity necessitate further exploration. Purpose: To examine the effects of pre-exercise caffeine on post-exercise BP and baPWV in hypertensive men and women. Method: Twenty hypertensive adults (10 males, 10 females; 33.7 ± 8.4 years; SBP: 139.8 ± 9.2 mmHg; DBP: 87.3 ± 10.9 mmHg) with no regular exercise habits, no caffeine consumption habits, and not taking any medications participated in a double-blind, repeated-measures trial. Participants ingested 3 mg/kg caffeine or placebo 30 minutes before a 30-minute treadmill exercise at 70% heart rate reserve. BP and baPWV were measured at baseline, pre-exercise, and 30, 60, 90, and 120 minutes post-exercise. Blood markers (eNOS, ET-1) were also analyzed. Results: Caffeine significantly increased BP post-exercise (30, 60 and 90 min for SBP and MAP, 30 and 60 min for DBP) compared to placebo. No significant effects were found for ABI, baPWV, or blood markers. Conclusion: Pre-exercise caffeine (3 mg/kg) offsets the PEH of aerobic exercise in hypertensive patients and does not reduce baPWV. These effects were consistent across sexes.

    第壹章 緒論1 第一節 研究背景 1 第二節 研究目的 4 第三節 研究假設 5 第四節 研究重要性 5 第貳章 文獻探討 6 第一節 血壓與心血管風險的性別差異 6 第二節 有氧運動對運動後低血壓及PWV的效應 7 第三節 咖啡因調節血壓及PWV的機制 10 第四節 有氧運動前增補咖啡因對運動後低血壓及PWV變化之影響 13 第五節 本章總結 14 第參章 研究方法 16 第一節 研究參與者 16 第二節 實驗時間與地點 17 第三節 實驗方法與步驟 17 第四節 資料處理 23 第肆章 研究結果 24 第一節 研究參與者基本資料 24 第二節 有氧運動前增補咖啡因對高血壓患者血壓及心跳率的影響 26 第三節 有氧運動前增補咖啡因對高血壓患者脈波傳導速率的影響 36 第四節 有氧運動前增補咖啡因對高血壓患者血液指標的影響 37 第伍章 討論 39 第一節 有氧運動前增補咖啡因對高血壓患者血壓調節之影響 39 第二節 不同性別高血壓患者對運動後低血壓及咖啡因效應之影響 40 第三節 有氧運動前增補咖啡因對高血壓患者baPWV之影響 41 第四節 eNOS及ET-1與運動後低血壓之關聯 43 第五節 結論與建議 44 參考文獻 46 附錄 55 附件一 研究參與者知情同意書 55 附件二 70% HRR紀錄表 58 附件三 運動強度自覺量表 59 附件四 飲食紀錄表 60

    黃君秦、王鶴森 (2021)。有氧運動前增補咖啡因對健康成年男性運動後低血壓與肱踝脈波傳導速率之影響。體育學報,54(1),39-50。https://doi.org/10.6222/pej.202103_54(1).0004
    童亢、王鶴森、林信甫、蔡易珊、王宏豪 (2023)。有氧運動後增補咖啡因對健康成年男性踝臂脈波傳導速率及血壓之影響。體育學報,56(1),61-76。https://doi.org/10.6222/pej.202303_56(1).0004
    衛生福利部 (2024)。112年國人死因統計結果。https://www.mohw.gov.tw/cp-16-79055-1.html
    Adan, A., Prat, G., Fabbri, M., & Sànchez-Turet, M. (2008). Early effects of caffeinated and decaffeinated coffee on subjective state and gender differences. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(7), 1698-1703. https://doi.org/https://doi.org/10.1016/j.pnpbp.2008.07.005
    Asmar, R., Benetos, A., Topouchian, J., Laurent, P., Pannier, B., Brisac, A.-M., Target, R., & Levy, B. I. (1995). Assessment of arterial distensibility by automatic pulse wave velocity measurement. Hypertension, 26(3), 485-490. https://doi.org/doi:10.1161/01.HYP.26.3.485
    Borg, G. (1970). Perceived exertion as an indicator of somatic stress. Scandinavian Journal of Rehabilitation Medicine, 2(2), 92–98.
    Botella, P., & Parra, A. (2003). Coffee increases state anxiety in males but not in females. Human Psychopharmacology: Clinical and Experimental, 18(2), 141-143. https://doi.org/https://doi.org/10.1002/hup.444
    Bruce, C., Yates, D. H., & Thomas, P. S. (2002). Caffeine decreases exhaled nitric oxide. Thorax, 57(4), 361-363. https://doi.org/10.1136/thorax.57.4.361
    Blacher, J., Asmar, R., Djane, S., London, G. M., & Safar, M. E. (1999). Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension, 33(5), 1111-1117. https://doi.org/10.1161/01.hyp.33.5.1111
    Ballard, K. D., Timsina, R., & Timmerman, K. L. (2021). Influence of time of day and intermittent aerobic exercise on vascular endothelial function and plasma endothelin-1 in healthy adults. Chronobiology International, 38(7), 1064–1071. https://doi.org/10.1080/07420528.2021.1907395
    Carpio-Rivera, E., Moncada-Jiménez, J., Salazar-Rojas, W., & Solera-Herrera, A. (2016). Acute effects of exercise on blood pressure: a meta-analytic investigation. Arquivos Brasileiros de Cardiologia, 106(5), 422-433. https://doi.org/10.5935/abc.20160064
    Chen, H. Y., Chen, Y. C., Tung, K., Chao, H. H., & Wang, H. S. (2019). Effects of caffeine and sex on muscle performance and delayed-onset muscle soreness after exercise-induced muscle damage: a double-blind randomized trial. Journal of Applied Physiology (1985), 127(3), 798-805. https://doi.org/10.1152/japplphysiol.01108.2018
    Ciolac, E. G., Bocchi, E. A., Bortolotto, L. A., Carvalho, V. O., Greve, J. M. D., & Guimarães, G. V. (2010). Effects of high-intensity aerobic interval training vs. moderate exercise on hemodynamic, metabolic and neuro-humoral abnormalities of young normotensive women at high familial risk for hypertension. Hypertension Research, 33(8), 836-843. https://doi.org/10.1038/hr.2010.72
    Cocks, M., Shaw, C. S., Shepherd, S. O., Fisher, J. P., Ranasinghe, A. M., Barker, T. A., Tipton, K. D., & Wagenmakers, A. J. (2013). Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. The Journal of Physiology 591(3), 641-656. https://doi.org/10.1113/jphysiol.2012.239566
    Costa, J. B. Y., Anunciacao, P. G., Ruiz, R. J., Polito, M. D., & Casonatto, J. (2012). Effect of caffeine intake on blood pressure and heart rate variability after a single bout of aerobic exercise: original research article. International SportMed Journal, 13(3), 109-121. https://doi.org/doi:10.10520/EJC125879
    Doonan, R. J., Mutter, A., Egiziano, G., Gomez, Y. H., & Daskalopoulou, S. S. (2013). Differences in arterial stiffness at rest and after acute exercise between young men and women. Hypertension Research, 36(3), 226-231. https://doi.org/10.1038/hr.2012.158
    Dill, D. B., & Costill, D. L. (1974). Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. Journal of Applied Physiology, 37(2), 247-248. https://doi.org/10.1152/jappl.1974.37.2.247
    Dickerson, J. A., Nagaraja, H. N., & Raman, S. V. (2010). Gender-related differences in coronary artery dimensions: a volumetric analysis. Clinical Cardiology, 33(2), E44-49. https://doi.org/10.1002/clc.20509
    Dluzen, D. E. (2000). Neuroprotective effects of estrogen upon the nigrostriatal dopaminergic system. Journal of Neurocytology, 29(5-6), 387-399. https://doi.org/10.1023/a:1007117424491
    Davenport, A. P., Hyndman, K. A., Dhaun, N., Southan, C., Kohan, D. E., Pollock, J. S., Pollock, D. M., Webb, D. J., & Maguire, J. J. (2016). Endothelin. Pharmacological Reviews, 68(2), 357-418. https://doi.org/10.1124/pr.115.011833
    Esformes, J. I., Norman, F., Sigley, J., & Birch, K. M. (2006). The influence of menstrual cycle phase upon postexercise hypotension. Medicine & Science in Sports & Exercise, 38(3), 484-491. https://doi.org/10.1249/01.mss.0000193559.98095.ea
    Fredholm, B. B. (1995). Adenosine, adenosine receptors and the actions of caffeine. Pharmacology & Toxicology, 76(2), 93-101. https://doi.org/https://doi.org/10.1111/j.16000773.1995.tb00111.x
    Förstermann, U., & Sessa, W. C. (2011). Nitric oxide synthases: regulation and function. European Heart Journal, 33(7), 829-837. https://doi.org/10.1093/eurheartj/ehr304
    Guest, N. S., VanDusseldorp, T. A., Nelson, M. T., Grgic, J., Schoenfeld, B. J., Jenkins, N. D. M., Arent, S. M., Antonio, J., Stout, J. R., Trexler, E. T., Smith-Ryan, A. E., Goldstein, E. R., Kalman, D. S., & Campbell, B. I. (2021). International society of sports nutrition position stand: caffeine and exercise performance. Journal of the International Society of Sports Nutrition, 18(1), 1. https://doi.org/10.1186/s12970-020-00383-4
    Gerdts, E., Sudano, I., Brouwers, S., Borghi, C., Bruno, R. M., Ceconi, C., Cornelissen, V., Diévart, F., Ferrini, M., Kahan, T., Løchen, M. L., Maas, A., Mahfoud, F., Mihailidou, A. S., Moholdt, T., Parati, G., & de Simone, G. (2022). Sex differences in arterial hypertension. European Heart Journal, 43(46), 4777-4788. https://doi.org/10.1093/eurheartj/ehac470
    Halliwill, J. R. (2001). Mechanisms and clinical implications of post-exercise hypotension in humans. Exercise And Sport Sciences Reviews, 29(2), 65–70. https://doi.org/10.1097/00003677-200104000-00005
    Hartley, T. R., Lovallo, W. R., & Whitsett, T. L. (2004). Cardiovascular effects of caffeine in men and women. American Journal of Cardiology, 93(8), 1022-1026. https://doi.org/10.1016/j.amjcard.2003.12.057
    Hartley, T. R., Sung, B. H., Pincomb, G. A., Whitsett, T. L., Wilson, M. F., & Lovallo, W. R. (2000). Hypertension risk status and effect of caffeine on blood pressure. Hypertension, 36(1), 137-141. https://doi.org/doi:10.1161/01.HYP.36.1.137
    Higashi, Y., Noma, K., Yoshizumi, M., & Kihara, Y. (2009). Endothelial function and oxidative stress in cardiovascular diseases. Circulation Journal, 73(3), 411-418. https://doi.org/10.1253/circj.cj-08-1102
    Ioakeimidis, N., Tzifos, V., Vlachopoulos, C., Terentes-Printzios, D., Georgakopoulos, C., & Tousoulis, D. (2018). Acute effect of coffee on aortic stiffness and wave reflections in healthy individuals: differential effect according to habitual consumption. International Journal of Food Sciences and Nutrition, 69(7), 870-881. https://doi.org/10.1080/09637486.2017.1422700
    Ji, H., Niiranen, T. J., Rader, F., Henglin, M., Kim, A., Ebinger, J. E., Claggett, B., Merz, C. N. B., & Cheng, S. (2021). Sex differences in blood pressure associations with cardiovascular outcomes. Circulation, 143(7), 761-763. https://doi.org/doi:10.1161/CIRCULATIONAHA.120.049360
    Kim, H.-L. (2023). Arterial stiffness and hypertension. Clinical Hypertension, 29(1), 31. https://doi.org/10.1186/s40885-023-00258-1
    Kenney, M. J., & Seals, D. R. (1993). Postexercise hypotension. Key features, mechanisms, and clinical significance. Hypertension, 22(5), 653-664. https://doi.org/doi:10.1161/01.HYP.22.5.653
    Karatzis, E., Papaioannou, T. G., Aznaouridis, K., Karatzi, K., Stamatelopoulos, K., Zampelas, A., Papamichael, C., Lekakis, J., & Mavrikakis, M. (2005). Acute effects of caffeine on blood pressure and wave reflections in healthy subjects: Should we consider monitoring central blood pressure?. International Journal of Cardiology, 98(3), 425-430. https://doi.org/10.1016/j.ijcard.2003.11.013
    Lane, J. D., Steege, J. F., Rupp, S. L., & Kuhn, C. M. (1992). Menstrual cycle effects on caffeine elimination in the human female. European Journal of Clinical Pharmacology, 43(5), 543-546. https://doi.org/10.1007/bf02285099
    Lefferts, W. K., DeBlois, J. P., Receno, C. N., Barreira, T. V., Brutsaert, T. D., Carhart, R. L., & Heffernan, K. S. (2018). Effects of acute aerobic exercise on arterial stiffness and cerebrovascular pulsatility in adults with and without hypertension. Journal of Hypertension, 36(8), 1743-1752. https://doi.org/10.1097/hjh.0000000000001752
    Lewington, S., Clarke, R., Qizilbash, N., Peto, R., Collins, R., & Prospective Studies, C. (2002). Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet, 360(9349), 1903-1913. https://doi.org/10.1016/s0140-6736(02)11911-8
    Moncada, S., Higgs, E. A., Hodson, H. F., Knowles, R. G., Lopez-Jaramillo, P., McCall, T., Palmer, R. M. J., Radomski, M. W., Rees, D. D., & Schulz, R. (1991). The l-arginine: nitric oxide pathway. Journal of Cardiovascular Pharmacology, 17, S1-S9. https://doi.org/10.1056/NEJM199312303292706
    Maeda, S., Sugawara, J., Yoshizawa, M., Otsuki, T., Shimojo, N., Jesmin, S., Ajisaka, R., Miyauchi, T., & Tanaka, H. (2009). Involvement of endothelin-1 in habitual exercise-induced increase in arterial compliance. Acta Physiol (Oxf), 196(2), 223-229. https://doi.org/10.1111/j.1748-1716.2008.01909.x
    Maughan, R. J., & Griffin, J. (2003). Caffeine ingestion and fluid balance: a review. Journal of Human Nutrition and Dietetics, 16(6), 411-420. https://doi.org/https://doi.org/10.1046/j.1365-277X.2003.00477.x
    Munro, C. A., McCaul, M. E., Wong, D. F., Oswald, L. M., Zhou, Y., Brasic, J., Kuwabara, H., Kumar, A., Alexander, M., Ye, W., & Wand, G. S. (2006). Sex differences in striatal dopamine release in healthy adults. Biological Psychiatry, 59(10), 966-974. https://doi.org/10.1016/j.biopsych.2006.01.008
    Nehlig, A. (2018). Interindividual Differences in Caffeine metabolism and factors driving caffeine consumption. Pharmacological Reviews, 70(2), 384-411. https://doi.org/10.1124/pr.117.014407
    Notarius, C. F., Morris, B. L., & Floras, J. S. (2006). Caffeine attenuates early post-exercise hypotension in middle-aged subjects. American Journal of Hypertension, 19(2), 184-188. https://doi.org/10.1016/j.amjhyper.2005.07.022
    Nurminen, M. L., Niittynen, L., Korpela, R., & Vapaatalo, H. (1999). Coffee, caffeine and blood pressure: A critical review. European Journal of Clinical Nutrition, 53(11), 831-839. https://doi.org/10.1038/sj.ejcn.1600899
    Ormsbee, M. J., Bach, C. W., & Baur, D. A. (2014). Pre-exercise nutrition: the role of macronutrients, modified starches and supplements on metabolism and endurance performance. Nutrients, 6(5), 1782-1808. https://doi.org/10.3390/nu6051782
    Papamichael, C. M., Aznaouridis, K. A., Karatzis, E. N., Karatzi, K. N., Stamatelopoulos, K. S., Vamvakou, G., Lekakis, J. P., & Mavrikakis, M. E. (2005). Effect of coffee on endothelial function in healthy subjects: the role of caffeine. Clinical Science (Lond), 109(1), 55-60. https://doi.org/10.1042/cs20040358
    Pickering, C., & Grgic, J. (2019). Caffeine and exercise: What next? Sports Medicine, 49(7), 1007-1030. https://doi.org/10.1007/s40279-019-01101-0
    Pescatello, L. S., Fargo, A. E., Leach, C. N., & Scherzer, H. H. (1991). Short-term effect of dynamic exercise on arterial blood pressure. Circulation, 83(5), 1557-1561. https://doi.org/doi:10.1161/01.CIR.83.5.1557
    Ribeiro-Alves, M. A., Trugo, L. C., & Donangelo, C. M. (2003). Use of oral contraceptives blunts the calciuric effect of caffeine in young adult women. The Journal of Nutrition, 133(2), 393-398. https://doi.org/10.1093/jn/133.2.393
    Roberts, C. K., Barnard, R. J., Jasman, A., & Balon, T. W. (1999). Acute exercise increases nitric oxide synthase activity in skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism, 277(2), E390-E394. https://doi.org/10.1152/ajpendo.1999.277.2.E390
    Skinner, T. L., Desbrow, B., Arapova, J., Schaumberg, M. A., Osborne, J., Grant, G. D., Anoopkumar-Dukie, S., & Leveritt, M. D. (2019). Women experience the same ergogenic response to caffeine as men. Medicine & Science in Sports & Exercise, 51(6), 1195-1202. https://doi.org/10.1249/mss.0000000000001885
    Sugawara, J., Hayashi, K., Yokoi, T., Cortez-Cooper, M. Y., DeVan, A. E., Anton, M. A., & Tanaka, H. (2005). Brachial-ankle pulse wave velocity: an index of central arterial stiffness? Journal of Human Hypertension, 19(5), 401-406. https://doi.org/10.1038/sj.jhh.1001838
    Sugawara, J., Komine, H., Miyazawa, T., Imai, T., & Ogoh, S. (2015). Influence of single bout of aerobic exercise on aortic pulse pressure. European Journal of Applied Physiology, 115(4), 739-746. https://doi.org/10.1007/s00421-014-3061-0
    Stanhewicz, A. E., Wenner, M. M., & Stachenfeld, N. S. (2018). Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan. American Journal of Physiology-Heart and Circulatory Physiology, 315(6), H1569-H1588. https://doi.org/10.1152/ajpheart.00396.2018
    Salvi, P., Valbusa, F., Kearney-Schwartz, A., Labat, C., Grillo, A., Parati, G., & Benetos, A. (2022). Non-invasive assessment of arterial stiffness: pulse wave velocity, pulse wave analysis and carotid cross-sectional distensibility: comparison between methods. Journal of Clinical Medicine, 11(8). https://doi.org/10.3390/jcm11082225
    Senitko, A. N., Charkoudian, N., & Halliwill, J. R. (2002). Influence of endurance exercise training status and gender on postexercise hypotension. Journal of Applied Physiology (1985), 92(6), 2368-2374. https://doi.org/10.1152/japplphysiol.00020.2002
    Tanaka, H., Munakata, M., Kawano, Y., Ohishi, M., Shoji, T., Sugawara, J., Tomiyama, H., Yamashina, A., Yasuda, H., Sawayama, T., & Ozawa, T. (2009). Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness. Journal of Hypertension, 27(10), 2022-2027. https://doi.org/10.1097/HJH.0b013e32832e94e7
    Vlachopoulos, C., Aznaouridis, K., & Stefanadis, C. (2010). Prediction of cardiovascular events And all-cause mortality with arterial stiffness: a systematic review and meta-analysis. Journal of the American College of Cardiology, 55(13), 1318-1327. https://doi.org/10.1016/j.jacc.2009.10.061
    Vlachopoulos, C. V., Vyssoulis, G. G., Alexopoulos, N. A., Zervoudaki, A. I., Pietri, P. G., Aznaouridis, K. A., & Stefanadis, C. I. (2007). Effect of chronic coffee consumption on aortic stiffness and wave reflections in hypertensive patients. European Journal of Clinical Nutrition, 61(6), 796-802. https://doi.org/10.1038/sj.ejcn.1602577
    Vlachopoulos, C., Hirata, K., Stefanadis, C., Toutouzas, P., & O’Rourke, M. F. (2003). Caffeine increases aortic stiffness in hypertensive patients. American Journal of Hypertension, 16(1), 63-66. https://doi.org/10.1016/s0895-7061(02)03155-2
    Whelton, P. K., Carey, R. M., Aronow, W. S., Casey, D. E., Jr., Collins, K. J., Dennison Himmelfarb, C., DePalma, S. M., Gidding, S., Jamerson, K. A., Jones, D. W., MacLaughlin, E. J., Muntner, P., Ovbiagele, B., Smith, S. C., Jr., Spencer, C. C., Stafford, R. S., Taler, S. J., Thomas, R. J., Williams, K. A., Sr., . . . Wright, J. T., Jr. (2018). 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension, 71(6), 1269-1324. https://doi.org/10.1161/HYP.0000000000000066
    Wills, A. K., Lawlor, D. A., Matthews, F. E., Sayer, A. A., Bakra, E., Ben-Shlomo, Y., Benzeval, M., Brunner, E., Cooper, R., Kivimaki, M., Kuh, D., Muniz-Terrera, G., & Hardy, R. (2011). Life course trajectories of systolic blood pressure using longitudinal data from eight UK cohorts. PLOS Medicine, 8(6), e1000440. https://doi.org/10.1371/journal.pmed.1000440
    Wu, S., Jin, C., Li, S., Zheng, X., Zhang, X., Cui, L., & Gao, X. (2019). Aging, arterial stiffness, and blood pressure association in Chinese adults. Hypertension, 73(4), 893-899. https://doi.org/10.1161/hypertensionaha.118.12396
    Wang, T. D., Chiang, C. E., Chao, T. H., Cheng, H. M., Wu, Y. W., Wu, Y. J., Lin, Y. H., Chen, M. Y., Ueng, K. C., Chang, W. T., Lee, Y. H., Wang, Y. C., Chu, P. H., Chao, T. F., Kao, H. L., Hou, C. J., & Lin, T. H. (2022). 2022 Guidelines of the Taiwan society of cardiology and the Taiwan hypertension society for the management of hypertension. Acta Cardiologica Sinica, 38(3), 225-325. https://doi.org/10.6515/ACS.202205_38(3).20220321A
    Yamashina, A., Tomiyama, H., Arai, T., Hirose, K., Koji, Y., Hirayama, Y., Yamamoto, Y., & Hori, S. (2003). Brachial-ankle pulse wave velocity as a marker of atherosclerotic vascular damage and cardiovascular risk. Hypertension Research, 26(8), 615-622. https://doi.org/10.1291/hypres.26.615
    Yang, Z., Xia, W.-H., Su, C., Wu, F., Zhang, Y.-Y., Xu, S.-Y., Liu, X., Zhang, X.-Y., Ou, Z.-J., Lai, G.-H., Liao, X.-X., Jin, Y.-F., & Tao, J. (2013). Regular exercise-induced increased number and activity of circulating endothelial progenitor cells attenuates age-related decline in arterial elasticity in healthy men. International Journal of Cardiology, 165(2), 247-254. https://doi.org/https://doi.org/10.1016/j.ijcard.2011.08.055
    Zulkifly, M. F. M., Merkohitaj, O., Paulus, W., & Brockmöller, J. (2021). The roles of caffeine and corticosteroids in modulating cortical excitability after paired associative stimulation (PAS) and transcranial alternating current stimulation (tACS) in caffeine-naïve and caffeine-adapted subjects. Psychoneuroendocrinology, 127, 105201. https://doi.org/https://doi.org/10.1016/j.psyneuen.2021.105201
    Zang, Y., Ding, X., Zhao, M. X., Zhang, X., Zhang, L., Wu, S., & Sun, L. (2022). Arterial stiffness acute changes following aerobic exercise in males with and without hypertension. The Journal of Clinical Hypertension, 24(4), 430-437. https://doi.org/https://doi.org/10.1111/jch.14461

    下載圖示
    QR CODE