簡易檢索 / 詳目顯示

研究生: 林冠州
Lin, Guan-Zhou
論文名稱: 應用環境足跡指標評估氣候變遷下臺灣農業之環境衝擊及轉作調適策略
Assessment of environmental impacts on agriculture and evaluation of cultivation adaptation strategies using environmental footprint under climate change
指導教授: 李宗祐
Lee, Tsung-Yu
口試委員: 童慶斌
Tung, Ching-Pin
黃誌川
Huang, Jr-Chuan
許少瑜
Hsu, Shao-Yiu
江莉琦
Chiang, Li-Chi
李宗祐
Lee, Tsung-Yu
口試日期: 2023/07/25
學位類別: 博士
Doctor
系所名稱: 地理學系
Department of Geography
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 287
中文關鍵詞: SWAT模式氣候變遷環境足跡指標農業轉作永續發展目標(SDGs)
英文關鍵詞: SWAT model, climate change, environmental footprint, crop rotation, sustainable agricultural development goals (SDGs)
研究方法: 比較研究
DOI URL: http://doi.org/10.6345/NTNU202301630
論文種類: 學術論文
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球於氣候變遷的影響下,面臨糧食安全不足和環境生態惡化的挑戰,頻繁的極端天氣事件對農業永續發展產生負面影響。環境足跡的概念可用於協助分析氣候變遷情境下作物生產的資源利用和汙染排放對環境生態造成的壓力,並進一步分析轉作的可行性和效益。本研究利用SWAT模式及TCCIP AR5 RCP8.5 2081-2100統計降尺度的資料,模擬鳳山溪、頭前溪、烏溪和高屏溪等四個流域在現況氣候及氣候變遷下水資源、水質和作物產量的變化,並根據環境足跡的概念進行農業環境足跡指標框架之設計,運用該指標分析氣候變遷情境下各流域的水稻及經濟作物需轉作的面積以及轉作選擇。
    SWAT模式參數的檢定結果顯示,模式於四個流域模擬日流量、月尺度的營養鹽、輸砂和作物產量上都達到了良好的水準;未來臺灣將發生乾濕季降雨分布不均及農業用水量上升等現象,顯現出氣候變遷將對臺灣流域環境所帶來季節性的影響和衝擊;多數流域的農田於氣候變遷情境下作物產量將顯著減少,顯示出制定轉作策略及評估作物適栽性之必要性;各流域指標變化成果顯示,氣候變遷情境下水稻轉作成地瓜或大豆能以最小的轉作面積達到最大化的指標改善效益;鳳山溪及高屏溪流域另需要考量茶樹或果園之轉作才能減緩氣候變遷之威脅。減少產品生產過程中的污染排放和資源消耗為全球永續發展之趨勢,藉由各流域作物轉作面積調整及農業環境足跡之計算,對於臺灣農業環境的永續發展以及達到聯合國於2030年前訂定的永續農業發展的目標將有實質性的幫助。

    Under the global impacts of climate change, challenges such as food security deficits and deteriorating ecological conditions have emerged. Furthermore, frequent extreme weather events exert negative impacts on the sustainable development of agriculture. The concept of environmental footprint can be applied to examine the strain inflicted on ecological systems due to resource utilization and pollution emissions from crop production under climate change scenarios, further enabling the evaluation the feasibility and benefits of crop rotation. Utilizing the SWAT model combined with the downscaled data from TCCIP AR5 RCP8.5 for the period 2081-2100, this study simulated the variations in water resources, water quality, and crop yields across four river basins, namely Fengshan, Touqian, Wu, and Gaoping, under baseline condition and climate change. Guided by the environmental footprint concept, an agricultural environmental footprint indicator framework was established and applied to determine the required area and selection for crop rotation, specifically for rice and economic crops, in each basin under climate change scenarios.
    The validation results for the SWAT model parameters indicated that the model proficiently simulated daily flow, monthly nutrient, sediment transportation, and crop yields across all four basins. It will experience uneven rainfall distribution between wet and dry seasons and an increase in agricultural water demand, highlighting the seasonal influences and challenges climate change imposes on basin environments in Taiwan. Notably, crop yields in most basins are anticipated to decline significantly under climate change scenarios, indicating the need to develop crop rotation strategies and evaluate crop adaptability. An analysis of the indicator results across the basins suggests that rotating rice fields to either sweet potatoes or soybeans under the climate change scenarios can maximize benefits with the least amount of land transitioned. Additionally, considerations for transitioning to tea cultivation or orchards are essential for mitigating climate change threats in the Fengshan and Gaoping basins. A global trend towards sustainable development emphasizes the reduction of pollutant emissions and resource consumption during product production. By adjusting crop rotation areas across these basins and evaluating the agricultural environmental footprint, significant support is provided for sustainable agricultural development in Taiwan, aligning with the United Nations' goals for sustainable agricultural development set for 2030.

    第一章 緒論 1 第一節 研究動機與背景 1 第二節 研究目的 4 第二章 文獻回顧 6 第一節 足跡概念及應用案例 6 第二節 流域環境模擬及氣候變遷影響評估 10 第三節 作物生長模式應用於氣候變遷影響評估 12 第四節 流域環境指標及環境壓力影響評估 14 第三章 研究方法及研究區域 18 第一節 研究區域及研究資料 18 第二節 研究流程 24 第三節 SWAT模式簡介 28 第四節 SWAT-CUP檢定驗證 29 第五節 氣候變遷資料產製與說明 30 第六節 臺灣流域農業環境足跡指標架構與計算流程 31 第七節 作物用水生產效益指標計算方法 39 第八節 流域農業環境足跡指標權重計算方法 39 第九節 各流域輸砂及營養鹽推估計算方法 41 第十節 作物營養成分計算方法 41 第四章 模式建構及討論 43 第一節 SWAT模式檢定驗證成果 43 4.1.1流量檢定驗證成果 43 4.1.2硝酸鹽氮檢定驗證成果 68 4.1.3輸砂檢定驗證成果 81 4.1.4總磷檢定驗證成果 105 4.1.5作物產量檢定驗證成果 118 第二節 氣象合成模式產製成果 139 4.2.1氣候變遷RCP8.5L情境各流域降雨變化狀況 139 第三節 模式參數數值及模擬成果討論 145 第五章 成果及討論 150 第一節 各流域氣候變遷下之季節性變化 150 5.1.1氣候變遷下流域水資源滿足程度(AET/PET) 150 5.1.2氣候變遷下河川可用藍水變化狀況 152 5.1.3氣候變遷下流域平均綠水儲存量變化狀況 154 5.1.3氣候變遷下流域輸砂灰水需求量變化狀況 156 5.1.4氣候變遷下流域硝酸鹽氮灰水需求量變化狀況 158 5.1.5氣候變遷下流域總磷灰水需求量變化狀況 160 第二節 各流域作物種植及轉作於氣候變遷下營養鹽輸出量變化 162 5.2.1鳳山溪流域 162 5.2.2頭前溪流域 165 5.2.3烏溪流域 167 5.2.4高屏溪流域 169 第三節 各流域作物產量於氣候變遷情境下之變化 171 5.3.1水稻 171 5.3.2地瓜 173 5.3.3大豆 175 5.3.4玉米 176 5.3.5果樹 178 5.3.6氣候變遷下臺灣作物產量與全球作物產量變化之比較 180 第四節 各流域作物水足跡於氣候變遷情境之變化 181 5.4.1鳳山溪流域 181 5.4.2頭前溪流域 183 5.4.3烏溪流域 185 5.4.4高屏溪流域 187 第五節 作物生產效益指標於氣候變遷情境之變化 189 5.5.1氣候變遷下各流域水稻種植其生產效益之變化 189 5.5.2氣候變遷下各流域地瓜種植其生產效益之變化 192 5.5.3氣候變遷下各流域大豆種植其生產效益之變化 194 5.5.4氣候變遷下各流域玉米種植其生產效益之變化 196 5.5.5氣候變遷下流域茶樹及果樹種植其生產效益之變化 198 5.5.6臺灣各作物資源利用效益與國際間資源利用效益數值之比對 199 第六節 各流域環境足跡指標權重及氣候變遷影響評估 201 第七節 臺灣各流域作物轉作調適及農業環境足跡指標改善成效 209 5.7.1鳳山溪流域 209 5.7.2頭前溪流域 222 5.7.3烏溪流域 234 5.7.4高屏溪流域 245 第八節 臺灣各流域作物轉作營養供給效益及經濟效益評估 258 5.8.1鳳山溪流域 258 5.8.2頭前溪流域 261 5.8.3烏溪流域 263 5.8.4高屏溪流域 265 第六章 結論與建議 267 第一節 結論 267 第二節 未來研究展望及建議 271 參考文獻 273

    Abbaspour, K. C. (2015). SWAT-CUP: SWAT calibration and uncertainty programs—A user manual. Eawag: Dübendorf, Switzerland, 16–70.
    Alnadari, F., Almakas, A., Desoky, E.-S. M., Nasereldin, Y. A., Alklaf, S. A., & Elrys, A. S. (2021). The nitrogen and phosphorus footprints of food products in Yemen over the last 57 years. Environmental Science and Pollution Research, 28, 26500–26514.
    Amouzou, K. A., Lamers, J. P., Naab, J. B., Borgemeister, C., Vlek, P. L., & Becker, M. (2019). Climate change impact on water-and nitrogen-use efficiencies and yields of maize and sorghum in the northern Benin dry savanna, West Africa. Field Crops Research, 235, 104–117.
    Anderson, M. C., Allen, R. G., Morse, A., & Kustas, W. P. (2012). Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sensing of Environment, 122, 50–65.
    Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R., Van Griensven, A., & Van Liew, M. W. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491–1508.
    Asadieh, B., & Krakauer, N. Y. (2017). Global change in streamflow extremes under climate change over the 21st century. Hydrology and Earth System Sciences, 21(11), 5863–5874.
    Ashraf Vaghefi, S., Mousavi, S., Abbaspour, K., Srinivasan, R., & Yang, H. (2014). Analyses of the impact of climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh River Basin in Iran. Hydrological Processes, 28(4), 2018–2032.
    Barlow, K., Christy, B., O’leary, G., Riffkin, P., & Nuttall, J. (2015). Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Research, 171, 109–119.
    Bastiaanssen, W. G. M., & Steduto, P. (2017). The water productivity score (WPS) at global and regional level: Methodology and first results from remote sensing measurements of wheat, rice and maize. Science of The Total Environment, 575, 595–611. https://doi.org/10.1016/j.scitotenv.2016.09.032
    Borucke, M., Moore, D., Cranston, G., Gracey, K., Iha, K., Larson, J., Lazarus, E., Morales, J. C., Wackernagel, M., & Galli, A. (2013). Accounting for demand and supply of the biosphere’s regenerative capacity: The National Footprint Accounts’ underlying methodology and framework. Ecological Indicators, 24, 518–533. https://doi.org/10.1016/j.ecolind.2012.08.005
    Bouraoui, F., & Grizzetti, B. (2014). Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Science of the Total Environment, 468, 1267–1277.
    Brauman, K. A., Richter, B. D., Postel, S., Malsy, M., & Flörke, M. (2016). Water depletion: An improved metric for incorporating seasonal and dry-year water scarcity into water risk assessmentsWater depletion: Improved metric for seasonal and dry-year water scarcity. Elementa: Science of the Anthropocene, 4.
    Brauman, K. A., Siebert, S., & Foley, J. A. (2013). Improvements in crop water productivity increase water sustainability and food security—A global analysis. Environmental Research Letters, 8(2), 024030.
    Brownlie, W. J., Sutton, M. A., Reay, D. S., Heal, K. V., Hermann, L., Kabbe, C., & Spears, B. M. (2021). Global actions for a sustainable phosphorus future. Nature Food, 2(2), 71–74.
    Cammarano, D., Ronga, D., Di Mola, I., Mori, M., & Parisi, M. (2020). Impact of climate change on water and nitrogen use efficiencies of processing tomato cultivated in Italy. Agricultural Water Management, 241, 106336.
    Carlson, K. M., Gerber, J. S., Mueller, N. D., Herrero, M., MacDonald, G. K., Brauman, K. A., Havlik, P., O’Connell, C. S., Johnson, J. A., & Saatchi, S. (2017). Greenhouse gas emissions intensity of global croplands. Nature Climate Change, 7(1), 63–68.
    Cassman, K. G., Dobermann, A., & Walters, D. T. (2002). Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO: A Journal of the Human Environment, 31(2), 132–140.
    Challinor, A. J., Watson, J., Lobell, D. B., Howden, S., Smith, D., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4(4), 287–291.
    Chen, C., Wang, E., & Yu, Q. (2010). Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain. Agricultural Water Management, 97(8), 1175–1184.
    Chen, S.-K., & Liu, C. W. (2002). Analysis of water movement in paddy rice fields (I) experimental studies. Journal of Hydrology, 260(1–4), 206–215.
    Chiang, L.-C., Liao, C.-J., Lu, C.-M., & Wang, Y.-C. (2021). Applicability of modified SWAT model (SWAT-Twn) on simulation of watershed sediment yields under different land use/cover scenarios in Taiwan. Environmental Monitoring and Assessment, 193(8), 1–23.
    Choi, J.-H., Maruthamuthu, S., Lee, H.-G., Ha, T.-H., & Bae, J.-H. (2009). Nitrate removal by electro-bioremediation technology in Korean soil. Journal of Hazardous Materials, 168(2–3), 1208–1216.
    Cordell, D., Drangert, J.-O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292–305.
    Cuceloglu, G., Abbaspour, K. C., & Ozturk, I. (2017). Assessing the water-resources potential of Istanbul by using a soil and water assessment tool (SWAT) hydrological model. Water, 9(10), 814.
    Davis, K. F., Chiarelli, D. D., Rulli, M. C., Chhatre, A., Richter, B., Singh, D., & DeFries, R. (2018). Alternative cereals can improve water use and nutrient supply in India. Science Advances, 4(7), eaao1108.
    Davis, K. F., Rulli, M. C., Seveso, A., & D’Odorico, P. (2017). Increased food production and reduced water use through optimized crop distribution. Nature Geoscience, 10(12), 919–924.
    Davis, K. F., Seveso, A., Rulli, M. C., & D’Odorico, P. (2017). Water savings of crop redistribution in the United States. Water, 9(2), 83.
    Dunn, S. M., Brown, I., Sample, J., & Post, H. (2012). Relationships between climate, water resources, land use and diffuse pollution and the significance of uncertainty in climate change. Journal of Hydrology, 434, 19–35.
    Fader, M., Gerten, D., Thammer, M., Heinke, J., Lotze-Campen, H., Lucht, W., & Cramer, W. (2011). Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade. Hydrology and Earth System Sciences, 15(5), 1641–1660.
    Falkenmark, M., & Rockström, J. (2004). Balancing water for humans and nature: The new approach in ecohydrology. Earthscan.
    Fang, K., Heijungs, R., & De Snoo, G. R. (2015). Understanding the complementary linkages between environmental footprints and planetary boundaries in a footprint–boundary environmental sustainability assessment framework. Ecological Economics, 114, 218–226.
    Fang, K., Song, S., Heijungs, R., de Groot, S., Dong, L., Song, J., & Wiloso, E. I. (2016). The footprint’s fingerprint: On the classification of the footprint family. Current Opinion in Environmental Sustainability, 23, 54–62.
    Faramarzi, M., Yang, H., Schulin, R., & Abbaspour, K. C. (2010). Modeling wheat yield and crop water productivity in Iran: Implications of agricultural water management for wheat production. Agricultural Water Management, 97(11), 1861–1875.
    Fellmann, T. (2012). The assessment of climate change-related vulnerability in the agricultural sector: Reviewing conceptual frameworks. Building Resilience for Adaptation to Climate Change in the Agriculture Sector, 23, 37.
    Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., & Suh, S. (2009). Recent developments in life cycle assessment. Journal of Environmental Management, 91(1), 1–21.
    Flörke, M., Schneider, C., & McDonald, R. I. (2018). Water competition between cities and agriculture driven by climate change and urban growth. Nature Sustainability, 1(1), 51–58.
    Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320(5878), 889–892.
    Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The soil and water assessment tool: Historical development, applications, and future research directions. Transactions of the ASABE, 50(4), 1211–1250.
    Gaxiola, R. A., Edwards, M., & Elser, J. J. (2011). A transgenic approach to enhance phosphorus use efficiency in crops as part of a comprehensive strategy for sustainable agriculture. Chemosphere, 84(6), 840–845.
    Gil, J. D. B., Reidsma, P., Giller, K., Todman, L., Whitmore, A., & van Ittersum, M. (2019). Sustainable development goal 2: Improved targets and indicators for agriculture and food security. Ambio, 48(7), 685–698.
    Godinot, O., Leterme, P., Vertès, F., & Carof, M. (2016). Indicators to evaluate agricultural nitrogen efficiency of the 27 member states of the European Union. Ecological Indicators, 66, 612–622.
    Guse, B., Reusser, D. E., & Fohrer, N. (2014). How to improve the representation of hydrological processes in SWAT for a lowland catchment–temporal analysis of parameter sensitivity and model performance. Hydrological Processes, 28(4), 2651–2670.
    Hák, T., Janoušková, S., & Moldan, B. (2016). Sustainable Development Goals: A need for relevant indicators. Ecological Indicators, 60, 565–573.
    Haro-Monteagudo, D., Palazón, L., & Beguería, S. (2020). Long-term sustainability of large water resource systems under climate change: A cascade modeling approach. Journal of Hydrology, 582, 124546.
    Herva, M., Franco, A., Carrasco, E. F., & Roca, E. (2011). Review of corporate environmental indicators. Journal of Cleaner Production, 19(15), 1687–1699.
    Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. M. (2011). The water footprint assessment manual: Setting the global standard. Routledge.
    Hoekstra, A. Y., & Mekonnen, M. M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences, 109(9), 3232–3237.
    Hoekstra, A. Y., & Wiedmann, T. O. (2014). Humanity’s unsustainable environmental footprint. Science, 344(6188), 1114–1117.
    Huang, J.-C., Lee, T.-Y., Lin, T.-C., Hein, T., Lee, L.-C., Shih, Y.-T., Kao, S.-J., Shiah, F.-K., & Lin, N.-H. (2016). Effects of different N sources on riverine DIN export and retention in a subtropical high-standing island, Taiwan. Biogeosciences, 13(6), 1787–1800.
    Hung, A. H. P. (2002). Virtual water trade a quantification of virtual water flows between nations in relation to international crop trade.
    Irmak, S., Kabenge, I., Rudnick, D., Knezevic, S., Woodward, D., & Moravek, M. (2013). Evapotranspiration crop coefficients for mixed riparian plant community and transpiration crop coefficients for Common reed, Cottonwood and Peach-leaf willow in the Platte River Basin, Nebraska-USA. Journal of Hydrology, 481, 177–190.
    Jamshidi, S., Imani, S., & Delavar, M. (2022). An approach to quantifying the grey water footprint of agricultural productions in basins with impaired environment. Journal of Hydrology, 606, 127458.
    Jhariya, M. K., Banerjee, A., Meena, R. S., & Yadav, D. K. (2019). Sustainable agriculture, forest and environmental management. Springer.
    Kao, S.-J., Lee, T.-Y., & Milliman, J. D. (2005). Calculating highly fluctuated suspended sediment fluxes from mountainous rivers in Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 16(3), 653.
    Karabulut, A., Egoh, B. N., Lanzanova, D., Grizzetti, B., Bidoglio, G., Pagliero, L., Bouraoui, F., Aloe, A., Reynaud, A., & Maes, J. (2016). Mapping water provisioning services to support the ecosystem–water–food–energy nexus in the Danube river basin. Ecosystem Services, 17, 278–292.
    Karandish, F., Hoekstra, A. Y., & Hogeboom, R. J. (2020). Reducing food waste and changing cropping patterns to reduce water consumption and pollution in cereal production in Iran. Journal of Hydrology, 586, 124881.
    Krysanova, V., & White, M. (2015). Advances in water resources assessment with SWAT—an overview. Hydrological Sciences Journal, 60(5), 771–783.
    Lam, Q., Schmalz, B., & Fohrer, N. (2010). Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model. Agricultural Water Management, 97(2), 317–325.
    Leach, A. M., Emery, K. A., Gephart, J., Davis, K. F., Erisman, J. W., Leip, A., Pace, M. L., D’Odorico, P., Carr, J., & Noll, L. C. (2016). Environmental impact food labels combining carbon, nitrogen, and water footprints. Food Policy, 61, 213–223.
    Leach, A. M., Galloway, J. N., Bleeker, A., Erisman, J. W., Kohn, R., & Kitzes, J. (2012). A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environmental Development, 1(1), 40–66.
    Lee, S., Sadeghi, A. M., Yeo, I.-Y., McCarty, G. W., & Hively, W. D. (2017). Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay watersheds using the SWAT model. Transactions of the ASABE, 60(6), 1939–1955.
    Lee, T.-Y., Huang, J.-C., Kao, S.-J., & Tung, C.-P. (2013). Temporal variation of nitrate and phosphate transport in headwater catchments: The hydrological controls and land use alteration. Biogeosciences, 10(4), 2617–2632.
    Lee, T.-Y., Shih, Y.-T., Huang, J.-C., Kao, S.-J., Shiah, F.-K., & Liu, K.-K. (2014). Speciation and dynamics of dissolved inorganic nitrogen export in the Danshui River, Taiwan. Biogeosciences, 11(19), 5307–5321.
    Leng, G., & Hall, J. (2019). Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Science of the Total Environment, 654, 811–821.
    Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529(7584), 84–87.
    Li, Y., Ye, W., Wang, M., & Yan, X. (2009). Climate change and drought: A risk assessment of crop-yield impacts. Climate Research, 39(1), 31–46.
    Lian, H., Yen, H., Huang, J.-C., Feng, Q., Qin, L., Bashir, M. A., Wu, S., Zhu, A.-X., Luo, J., & Di, H. (2020). CN-China: Revised runoff curve number by using rainfall-runoff events data in China. Water Research, 177, 115767.
    Lin, C.-Y., & Tung, C.-P. (2017). Procedure for selecting GCM datasets for climate risk assessment. Terrestrial, Atmospheric & Oceanic Sciences, 28(1).
    Lin, G.-Z., Hsu, S.-Y., Ho, C.-C., Chen, C.-F., Huang, J.-C., & Lee, T.-Y. (2022). Application of Soil and Water Assessment Tool (SWAT) to evaluate the fates of nitrogenous fertilizer in subtropical mountainous watershed tea farms. Environmental Monitoring and Assessment, 194(3), 1–23.
    Liu, C., Kroeze, C., Hoekstra, A. Y., & Gerbens-Leenes, W. (2012). Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecological Indicators, 18, 42–49.
    Liu, C., Sun, G., McNulty, S. G., Noormets, A., & Fang, Y. (2017). Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements. Hydrology and Earth System Sciences, 21(1), 311–322.
    Liu, J., Oita, A., Hayashi, K., & Matsubae, K. (2022). Sustainability of vertical farming in comparison with conventional farming: A case study in Miyagi Prefecture, Japan, on nitrogen and phosphorus footprint. Sustainability, 14(2), 1042.
    Liu, S. C., Fu, C., Shiu, C., Chen, J., & Wu, F. (2009). Temperature dependence of global precipitation extremes. Geophysical Research Letters, 36(17).
    Lu, C.-M., & Chiang, L.-C. (2019). Assessment of sediment transport functions with the modified SWAT-Twn model for a Taiwanese small mountainous watershed. Water, 11(9), 1749.
    Ma, L., Ma, W., Velthof, G., Wang, F., Qin, W., Zhang, F., & Oenema, O. (2010). Modeling nutrient flows in the food chain of China. Journal of Environmental Quality, 39(4), 1279–1289.
    Mastrandrea, M. D., Field, C. B., Stocker, T. F., Edenhofer, O., Ebi, K. L., Frame, D. J., Held, H., Kriegler, E., Mach, K. J., & Matschoss, P. R. (2010). Guidance note for lead authors of the IPCC fifth assessment report on consistent treatment of uncertainties.
    Matiu, M., Ankerst, D. P., & Menzel, A. (2017). Interactions between temperature and drought in global and regional crop yield variability during 1961-2014. PloS One, 12(5), e0178339.
    Maurya, S. P., Singh, P. K., Ohri, A., & Singh, R. (2020). Identification of indicators for sustainable urban water development planning. Ecological Indicators, 108, 105691.
    Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577–1600.
    Mekonnen, M. M., & Hoekstra, A. Y. (2014). Water footprint benchmarks for crop production: A first global assessment. Ecological Indicators, 46, 214–223.
    Mohanty, S., Swain, C. K., Kumar, A., & Nayak, A. (2020). Nitrogen footprint: A useful indicator of agricultural sustainability. Nutrient Dynamics for Sustainable Crop Production, 135–156.
    Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763–1785.
    Mukherjee, A., & Huda, A. (2018). Assessment of climate variability and trend on wheat productivity in West Bengal, India: Crop growth simulation approach. Climatic Change, 147(1–2), 235–252.
    Nakagawa, K., Amano, H., Persson, M., & Berndtsson, R. (2021). Spatiotemporal variation of nitrate concentrations in soil and groundwater of an intensely polluted agricultural area. Scientific Reports, 11(1), 1–13.
    Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology, 133(1), 69–88. https://doi.org/10.1016/j.agrformet.2005.07.012
    Norton, R., Davidson, E., & Roberts, T. (2015). Nitrogen use efficiency and nutrient performance indicators. Global Partnership on Nutrient Management, 14.
    Omara, P., Aula, L., Oyebiyi, F., & Raun, W. R. (2019). World cereal nitrogen use efficiency trends: Review and current knowledge. Agrosystems, Geosciences & Environment, 2(1), 1–8.
    Pacheco, F., Ometto, J., Gomes, L., Tosto, K., Miranda, M., Loverde‐Oliveira, S., Pessi, D., & Cox, C. (2021). Nutrient balance and use efficiency in agricultural lands in the Vermelho river watershed, upper Pantanal, Brazil. Journal of Geophysical Research: Biogeosciences, 126(3), e2020JG005673.
    Pandey, B. K., Khare, D., Kawasaki, A., & Mishra, P. K. (2019). Climate change impact assessment on blue and green water by coupling of representative CMIP5 climate models with physical based hydrological model. Water Resources Management, 33, 141–158.
    Qin, Y., Mueller, N. D., Siebert, S., Jackson, R. B., AghaKouchak, A., Zimmerman, J. B., Tong, D., Hong, C., & Davis, S. J. (2019). Flexibility and intensity of global water use. Nature Sustainability, 2(6), 515–523.
    Quemada, M., Lassaletta, L., Jensen, L. S., Godinot, O., Brentrup, F., Buckley, C., Foray, S., Hvid, S. K., Oenema, J., Richards, K. G., & Oenema, O. (2020). Exploring nitrogen indicators of farm performance among farm types across several European case studies. Agricultural Systems, 177, 102689. https://doi.org/10.1016/j.agsy.2019.102689
    Roberts, T. L., & Johnston, A. E. (2015). Phosphorus use efficiency and management in agriculture. Resources, Conservation and Recycling, 105, 275–281.
    Rockstrom, J. (2013). Balancing water for humans and nature: The new approach in ecohydrology. Routledge.
    Russo, T., Alfredo, K., & Fisher, J. (2014). Sustainable water management in urban, agricultural, and natural systems. Water, 6(12), 3934–3956.
    Schröder, J. J., Smit, A. L., Cordell, D., & Rosemarin, A. (2011). Improved phosphorus use efficiency in agriculture: A key requirement for its sustainable use. Chemosphere,84(6),822–831. https://doi.org/10.1016/j.chemosphere.2011.01.065
    Singh, R. B., & Kumar, A. (2015). Climate variability and water resource scarcity in drylands of Rajasthan, India. Geoenvironmental Disasters, 2(1), 1–10.
    Sinnathamby, S., Douglas-Mankin, K. R., & Craige, C. (2017). Field-scale calibration of crop-yield parameters in the Soil and Water Assessment Tool (SWAT). Agricultural Water Management, 180, 61–69.
    Smith, K. (2013). Environmental hazards: Assessing risk and reducing disaster. Routledge.
    Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., De Vries, W., & De Wit, C. A. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855.
    Tan, M. L., Gassman, P. W., Srinivasan, R., Arnold, J. G., & Yang, X. (2019). A review of SWAT studies in Southeast Asia: Applications, challenges and future directions. Water, 11(5), 914.
    Tan, M. L., Gassman, P. W., Yang, X., & Haywood, J. (2020). A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Advances in Water Resources, 143, 103662.
    Tao, Y., Deng, Y., Du, Y., Xu, Y., Leng, Z., Ma, T., & Wang, Y. (2020). Sources and enrichment of phosphorus in groundwater of the Central Yangtze River Basin. Science of The Total Environment, 737, 139837.
    Trybula, E. M., Cibin, R., Burks, J. L., Chaubey, I., Brouder, S. M., & Volenec, J. J. (2015). Perennial rhizomatous grasses as bioenergy feedstock in SWAT: parameter development and model improvement. Gcb Bioenergy, 7(6), 1185–1202.
    United Nations Statistics Division. (2015). Discussion paper on principles of using quantification to operationalize the SDGs and criteria for indicator selection.
    van Ittersum, M. K., Leffelaar, P. A., Van Keulen, H., Kropff, M. J., Bastiaans, L., & Goudriaan, J. (2003). On approaches and applications of the Wageningen crop models. European Journal of Agronomy, 18(3–4), 201–234.
    Vanham, D., Leip, A., Galli, A., Kastner, T., Bruckner, M., Uwizeye, A., Dijk, K. van, Ercin, E., Dalin, C., Brandão, M., Bastianoni, S., Fang, K., Leach, A., Chapagain, A., Velde, M. V. der, Sala, S., Pant, R., Mancini, L., Monforti-Ferrario, F., … Hoekstra, A. Y. (2019). Environmental footprint family to address local to planetary sustainability and deliver on the SDGs. Science of The Total Environment, 693, 133642.
    Veettil, A. V., & Mishra, A. (2020). Water security assessment for the contiguous United States using water footprint concepts. Geophysical Research Letters, 47(7), e2020GL087061.
    Veettil, A. V., & Mishra, A. K. (2016). Water security assessment using blue and green water footprint concepts. Journal of Hydrology, 542, 589–602.
    Veettil, A. V., & Mishra, A. K. (2018). Potential influence of climate and anthropogenic variables on water security using blue and green water scarcity, Falkenmark index, and freshwater provision indicator. Journal of Environmental Management, 228, 346–362.
    Wang, J., Huang, G., Zhan, H., Mohanty, B. P., Zheng, J., Huang, Q., & Xu, X. (2014). Evaluation of soil water dynamics and crop yield under furrow irrigation with a two-dimensional flow and crop growth coupled model. Agricultural Water Management, 141, 10–22.
    Wang, Q., Li, S., & Li, R. (2019). Evaluating water resource sustainability in Beijing, China: Combining PSR model and matter-element extension method. Journal of Cleaner Production, 206, 171–179.
    Wang, R., Bowling, L. C., & Cherkauer, K. A. (2016). Estimation of the effects of climate variability on crop yield in the Midwest USA. Agricultural and Forest Meteorology, 216, 141–156.
    Warrack, J., Kang, M., & von Sperber, C. (2021). Groundwater phosphorus concentrations: Global trends and links with agricultural and oil and gas activities. Environmental Research Letters, 17(1), 014014.
    Wellen, C., Kamran-Disfani, A.-R., & Arhonditsis, G. B. (2015). Evaluation of the current state of distributed watershed nutrient water quality modeling. Environmental Science & Technology, 49(6), 3278–3290.
    Wheeler, T., & Von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508–513.
    White, J. W., Hoogenboom, G., Kimball, B. A., & Wall, G. W. (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Research, 124(3), 357–368.
    Williams, J., Jones, C., Kiniry, J., & Spanel, D. A. (1989). The EPIC crop growth model. Transactions of the ASAE, 32(2), 497–0511.
    Wu, L., Huang, K., Ridoutt, B. G., Yu, Y., & Chen, Y. (2021). A planetary boundary-based environmental footprint family: From impacts to boundaries. Science of The Total Environment, 785, 147383.
    Xian, Y., Cai, G., Sang, J., Chen, Y., & Wang, X. (2023). Agricultural environmental footprint index based on planetary boundary: Framework and case on Chinese agriculture. Journal of Cleaner Production, 385, 135699.
    Xie, P., Zhuo, L., Yang, X., Huang, H., Gao, X., & Wu, P. (2020). Spatial-temporal variations in blue and green water resources, water footprints and water scarcities in a large river basin: A case for the Yellow River basin. Journal of Hydrology, 590, 125222.
    Xie, W., Zhu, A., Ali, T., Zhang, Z., Chen, X., Wu, F., Huang, J., & Davis, K. F. (2023). Crop switching can enhance environmental sustainability and farmer incomes in China. Nature, 616(7956), 300–305.
    Yadav, M., Kumar, R., Parihar, C., Yadav, R., Jat, S., Ram, H., Meena, R., Singh, M., Verma, A., & Kumar, U. (2017). Strategies for improving nitrogen use efficiency: A review. Agricultural Reviews, 38(1), 29–40.
    Yang, Y., Zou, J., Huang, W., Manevski, K., Olesen, J. E., Rees, R. M., Hu, S., Li, W., Kersebaum, K.-C., & Louarn, G. (2022). Farm-scale practical strategies to increase nitrogen use efficiency and reduce nitrogen footprint in crop production across the North China Plain. Field Crops Research, 283, 108526.
    Yeh, H.-F., & Chen, H.-Y. (2022). Assessing the long-term hydrologic responses of river catchments in Taiwan using a multiple-component hydrograph approach. Journal of Hydrology, 610, 127916.
    Yen, H., Bailey, R. T., Arabi, M., Ahmadi, M., White, M. J., & Arnold, J. G. (2014). The role of interior watershed processes in improving parameter estimation and performance of watershed models. Journal of Environmental Quality, 43(5), 1601–1613.
    Zhang, K., Kimball, J. S., Nemani, R. R., Running, S. W., Hong, Y., Gourley, J. J., & Yu, Z. (2015). Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Scientific Reports, 5(1), 1–9.
    Zhang, X., Xu, Z., Sun, X., Dong, W., & Ballantine, D. (2013). Nitrate in shallow groundwater in typical agricultural and forest ecosystems in China, 2004–2010. Journal of Environmental Sciences, 25(5), 1007–1014.
    Zuo, D., Xu, Z., Peng, D., Song, J., Cheng, L., Wei, S., Abbaspour, K. C., & Yang, H. (2015). Simulating spatiotemporal variability of blue and green water resources availability with uncertainty analysis. Hydrological Processes, 29(8), 1942–1955.
    Zwart, S. J., & Bastiaanssen, W. G. (2004). Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agricultural Water Management, 69(2), 115–133.
    姚銘輝, & 陳守泓. (2009). 氣候變遷下水稻生長及產量之衝擊評估. 作物, 環境與生物資訊.
    姚佩萱, 徐貴新, 鄭百佑, 張元馨, & 張尊國. (2013). 臺灣稻作水足跡分析. Journal of Taiwan Agricultural Engineering, 59(3).
    陳豐文, 劉振宇, & 蔡西銘. (2013). 連續型機率分配模式應用於台灣灌區有效雨量之推估. Journal of Taiwan Agricultural Engineering, 59(2), 1-28.
    吳瑞賢, 吳幸娟, & 馬郁棻. (2022). 臺灣合理灌溉用水量推估. Journal of Taiwan Agricultural Engineering, 66(2).
    林冠州. (2022). 氣候變遷下流域環境及永續農業調適策略之制定及評估-以石門水庫上游集水區為例. Journal of Taiwan Agricultural Engineering, 66(2).

    無法下載圖示 電子全文延後公開
    2026/08/01
    QR CODE