簡易檢索 / 詳目顯示

研究生: 楊秉羲
Yang, Ping-Gsi
論文名稱: 應用於微磁感測之垂直式霍爾磁場元件設計
Design of Vertical Hall Magnetic Sensor for Micro-Magnetic Application
指導教授: 郭建宏
Kuo, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 91
中文關鍵詞: 霍爾效應磁感測垂直式霍爾元件負阻抗轉換器
英文關鍵詞: Hall Effect, magnetic sensors, Vertical Hall sensor, Negative Impedance converter
DOI URL: https://doi.org/10.6345/NTNU202204959
論文種類: 學術論文
相關次數: 點閱:141下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在傳統的磁感測器中,現今常見的架構大致分為異向性磁電阻(Anisotropic Magneto Resistivity, AMR)與霍爾感測器(Hall sensor)。雖然在量測微磁場的條件下,異向性磁電阻有著較佳的靈敏度與線性度,但是其感測器與後續的電路較為不容易銜接,其原因在於感測器並非使用CMOS相關製程,並且在製造成本上相較於霍爾感測器要來的高。

    因此為了降低感測器實現的成本,本論使用TSMC 0.18 um 1P6M CMOS與0.35 um 1P4M CMOS共兩個製程來實現霍爾感測器。除此之外,為了彌補霍爾感測器線性度較差的問題,因此使用差動摺疊垂直式霍爾元件與平行摺疊垂直式霍爾元件,利用多個相同的感測器來有效的減小非線性。另一方面,為了彌補霍爾感測器靈敏度較差的問題,因此配合著折疊垂直式霍爾元件,使用負阻抗轉換器使其中一端的霍爾元件轉換至負阻抗,藉由正端霍爾元件與負端霍爾元件的串聯,來減小霍爾元件本身的阻抗的影響,並且同時增幅霍爾效應。隨著平行霍爾元件與負阻抗轉換器的配合,達到高感度的目的。

    最後,本論文採用TSMC 0.18 um 1P6M CMOS 的差動摺疊垂直式霍爾元件,其最佳的電流相關靈敏度為691 V/AT,最佳靈敏度為1.04 V/T。而TSMC 0.35 um 1P4M CMOS 的平行摺疊垂直式霍爾元件,其最佳的電流相關靈敏度為743 V/AT,最佳靈敏度為0.82 V/T。

    The conventional magnetic sensors can be separated into Anisotropic Magneto Resistivity (AMR) and Hall sensor. The AMR has better sensitivity and linearity when measuring in the condition of micro-magnetic field, but the sensor is harder to integrate into the electronic circuit than the other. The reason is that the AMR is not manufactured by the CMOS process, and its cost is higher than the Hall sensor.
    In order to reduce the cost of the sensor, this adopts two kinds of process 0.18 mm 1P6M CMOS and 0.35 um 2P4M CMOS in TSMC to manufacture the Hall device. Furthermore, we use the Differential folded vertical Hall device and the parallel folded vertical Hall device to offset the worse linearity of the Hall sensor. Many of the sensors can reduce the nonlinearity effectively. On the other hand, we use negative impedance converter (NIC) to make one of the Hall sensors be transferred into negative resistance. That can optimize the sensitivity of the Hall device by reducing the effect of resistance and enhancing the Hall Effect through the series between positive and negative Hall device. It can achieve high sensitivity with folded vertical Hall device and NIC.
    In conclusion, this adopted the process of TSMC 0.18 um 1P6M CMOS for parallel folded vertical Hall device. Their best supply-current-related magnetic sensitivity is 691 V/A•T and 743 V/A•T, and the best sensitivity is 1.04 V/T and 0.82 V/T separately.

    VI 目錄 摘要 ........................................................ I ABSTRACT ...................................................... III 致謝 ........................................................ V 目錄 ....................................................... VI 表目錄 ................................................. X 圖目錄 ................................................. XI 第一章 緒論 ........................................... 1 1.1 研究動機與背景 ...................................... 1 1.2 研究目的 ........................................... 2 1.3 論文大綱與概要 ...................................... 3 第二章 霍爾感測器之效能指標與架構比較 ................... 5 2.1 論文大綱與概要 ...................................... 5 2.2 霍爾感測器 ......................................... 6 2.3 霍爾角 ............................................. 9 2.4 感測器的效能指標 ................................... 10 2.5 霍爾感測器的種類 ................................... 11 2.5.1 水平式霍爾元件 ................................... 11 2.5.2 垂直式霍爾元件 ................................... 12 2.6 共形映射 (conformal mapping) ..................... 13 2.6.1 理想霍爾元件下的雙線性轉換 ........................ 16 2.6.2 實際霍爾元件下的雙線性轉換 ........................ 17 2.7 章節結論 .......................................... 19 第三章 差動摺疊垂直式霍爾感測器與負阻抗轉換器之電路之設計與模 擬 ..................................................... 21 3.1 前言 .............................................. 21 3.2 差動摺疊垂直式霍爾元件 ............................. 21 3.2.1 n-well 對於感測器的影響 .......................... 23 3.2.2 折疊式架構分析 ................................... 24 3.2.3 P+ 保護環的優點與目的 .......................... 25 3.2.4 差動摺疊垂直式霍爾元件電路模型 .................... 25 3.3 負阻抗轉換器 ....................................... 31 3.3.1 負電阻 .......................................... 31 3.3.2 負阻抗轉換器電路 ................................. 34 3.3.3 負阻抗轉換器的限制條件............................ 37 3.4 差動摺疊垂直式霍爾感測器與負阻抗轉換器 ............... 38 3.4.1 差動摺疊垂直式霍爾感測器 .......................... 38 3.4.2 運算放大器 ...................................... 39 3.4.3 平行摺疊垂直式霍爾感測器與負阻抗轉換器之模擬結果 .... 42 3.4.4 電路佈局與實現 ................................... 43 3.4.5 封裝和鎊線效應 ................................... 45 第四章 應用於微磁感測之平行摺疊垂直式霍爾元件與負阻抗轉換器電 路之設計與模擬 .......................................... 47 4.1 前言 .............................................. 47 4.2 平行垂直式霍爾磁場元件使用負阻抗轉換器應用於微磁感測 .. 47 4.2.1 折疊式架構分析 ................................... 48 4.2.2 平行摺疊垂直式霍爾元件電路模型 .................... 49 4.3 負阻抗轉換器 ........................................ 52 4.3.1 負阻抗轉換器電路 ................................. 52 4.4 平行摺疊垂直式霍爾感測器與負阻抗轉換器 ................ 55 4.4.1 平行摺疊垂直式霍爾感測器 .......................... 55 4.4.2 平行摺疊垂直式霍爾感測器與負阻抗轉換器之模擬結果 ..... 55 4.4.3 電路佈局與實現 ................................... 57 4.4.4 封裝和鎊線效應 ................................... 58 第五章 垂直式霍爾磁場元件使用負阻抗轉換器之量測 ......... 60 5.1 差動垂直式霍爾磁場元件使用負阻抗轉換器應用於微磁感測量 測 ..................................................... 60 5.1.1 晶片量測環境 ..................................... 60 5.1.2 線性穩壓電路(low dropout regulator, LDO) ......... 61 5.1.3 濾波槽電路(filter tank) ......................... 62 5.1.4 荷姆霍茲環(Helmholtz coil) ...................... 62 5.1.5 類比數位轉換器(analog to digital converter, ADC) ....................................................... 63 5.1.5 量測環境 ........................................ 63 5.1.6 量測結果 ........................................ 65 5.1.7 結論 ............................................ 67 5.2 平行摺疊垂直式霍爾元件之幾何校正係數效能比較與量測 .... 68 5.2.1 晶片量測環境 ..................................... 68 5.2.2 線性穩壓與濾波槽電路 .............................. 70 5.2.3 荷姆霍茲環 ...................................... 71 5.2.4 類比數位轉換器 ................................... 71 5.2.5 量測環境 ........................................ 72 5.2.6 量測結果 ........................................ 73 5.2.7 結論 ............................................ 80 第六章 結論與未來展望................................. 81 6.1 總結 .............................................. 81 6.2 未來展望 .......................................... 82 參考文獻 ............................................... 83 作者簡歷 ............................................... 83 學術成就 ............................................... 90

    [1] J. E. Lenz, “A Review of Magnetic Sensors,” Proc. IEEE, vol.78, no. 6, pp.973-989, Jun. 1990.
    [2] R. S. Popvic, J. A. Flanagan, and P. A. Basse, “The future of magnetic sensors,” Sensors amd Actuators, A 56, pp. 39-55, 1996.
    [3] Ch. S. Roumenin, “Bioplar Magnetotransistor Sensor. An invited Review,” Sensors amd Actuators, A 24, pp. 83-105, 1990.
    [4] L. Ristic, T. Smy, and H. P. Valtes, “A later magnetotransistor structure with a linear response to the magnetic field ,” IEEE Sensors Journal, Vol. 4, no. 6, pp. 1076-1086, 2004.
    [5] G. M. Sung, “Interaction between magnetoresistor and magnetotransistor in the longitudinal and folded vertical hall devices,” IEEE Sensors Journal, vol. 4, no. 6, pp. 749–758, Dec. 2004.
    [6] V. Zieren and B. P. M. Duyndam, “Magnetic-field-sensitive multicollector n-p-n transistor,” IEEE Trans. Electron Device, Vol. ED-29, No. 1, pp.83-93, 1982.
    [7] A. W.Vinal and N. A. Masnari, “Magnetic transistor behavior esplained by modulation of emitter injection, not carrier deflection,” IEEE Electron Device Lett., Vol. EDL-3, pp. 203-106, 1982.
    [8] E.H. Hall, “On a new action of the magnet on electric current,” American Journal of Mathematics, Vol.2, pp.92-287, 1879.
    [9] E.H. Hall, “On a new action of magnetism on a permanent electric current,” American Journal of Mathematics, Vol.3, pp.86-161, 1880.
    [10] S. Selberherr, Analysis and Simulation of Semiconductor Devices. Vienna, Austria: Springer-Verlag, 1984.
    [11] J. Kvitkovic, Hall Generators. Slovak Academy of Sciences, Bratislava, 1998, pp. 1–17.
    [12] R. S. Popvic, Hall-effect device, Sensor and Actuators. New York: Wiley, 2004.
    [13] Ch. S. Roumenin, “On the performance of a class of lateral magnetotransistors,” C. R. Acad. Bulg. Sci., 38, pp. 579-851, 1985.
    [14] J. Pascal, L. Hébrard, V. Frick, J. P. Blondé, “3D Hall probe integrated in 0.35 µm CMOS technology for magnetic field pulses measurements,” in Proc. 6th Int. IEEE Northeast Workshop in Circuit and System and TAISA Conference, 2008, pp. 97-100.
    [15] R. F. Wick, Solution of the field problem of the germanium gyrator, J. Appl. Phys. 25, 741-56, 1954.
    [16] L. V. Bewley, Two-dimensional Fields in Electrical Engineering, New York: Macmillan, 1948.
    [17] W. Versnel, “Analysis of a circular Hall plate with equal finite contacts,” Solid-State Electron. 24, pp. 863, 1981.
    [18] Y. Kanda, M. Migitaka, H. Yamamoto, H. Morozumi, T. Okabe, and S. Okazaki, “Silicon Hall-effect powe IC's for brushless motors,” IEEE Train. Electron Devices, vol. ED-29, 1982, pp. 64-70.
    [19] H. H. Wieder, Hall Generators and Magnetoresistors, London, England: Pion Ltd., 1971.
    [20] J. pascal, L. Hébrard, V. Frick, J. B. Kammerer, J. P. Blondé “Intrinsic limits of the sensitivity of CMOS intergrated vertical Hall device,” Sensors and Actuators A: Physical, Vol. 152, pp. 21-28, 2009.
    [21] H. P. Baltes and R. S. Popovic, “Integrated semiconductor magnetic field sensors,” Proc. Of the IEEE, vol. 74, pp. 1107–1132, Aug. 1986.
    [22] R. F. Wick, Solution of the Feld Problem of the Germanium Gyrator, J. Appl. Phys.25, pp. 741-56, 1954.
    [23] J. Haeusler, Die Geometriefunktion vierelektrodiger Hallgeneratoren, Arch. Elektrotech. 52, 11-19, 1968.
    [24] W. Versnel, Analysis of a circular Hall plate with equal finite contacts, Solid-State Electronics, Vol. 24, no. 1, pp. 63-68, Jan. 1981.
    [25] J. Pascal, L. Hébrard, JB Kammerer, V. Frick, JP. Blondé, A Vertical Hall Device in Standard Submicron CMOS Technology, Proc. of the 6th IEEE Conference on Sensors, Atlanta, GA, USA 28-31 October 2007, pp. 755-756.
    [26] E. Schurig, M. Demierre, C. Schott, R.S. Popovic, “A vertical Hall device in CMOS high-voltage technology,” Sensors & Actuators A, vol. 97–98, pp. 47–53, 2002.
    [27] L. Ristic, H. P. Baltes, T. Smy, and I. Filanovsky, “Suppressed sidewall injection magnetotransistor with focused emitter injection and carrier double deflection,” IEEE Electron Dev. Lett., vol. EDL-8, no. 9, pp. 395–396, Sep. 1987.
    [28] O. Aluf, Optoisolation Circuit:Nonlinear Applications in Engineering. World Scientific, 2012.
    [29] D. J. Shanefield, Industrial Electronics for Engineers, Chemists, and Technicians. Elsevier, 2010, pp. 18–19.
    [30] O. Aluf, Optoisolation Circuits: Nonlinearity Applications in Engineering. World Scientific, 2012, pp. 8–11.
    [31] H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd Ed. UK: Cambridge University Press, 2004, pp. 641–642.
    [32] Ch. S. Roumenin and S. V. Lozanova, “CMOS 2D Hall microsensor with minimal design complexity,” Electronics Letter, Vol. 43, no. 9, April 2007.
    [33] J. Pascal, L. Hebrard, J. Kammerer, and J. P. Blonde, “A Vertical Hall Device in Standard Submicron CMOS Technology,” IEEE Sensors, Atlanta, Oct. 2007, pp. 1480-1483.
    [34] M. Banjevic, S. Reynond, and R. S. Popvic, “On performance og series connected CMOS vertical Hall device,” in proc. 26th Int. Conf. Mocroelectronics, Nis, Serbia, 11-14 May, 2008, pp. 337-340.
    [35] C. S. Roumenin and S Lozanova, “Reprint of Magnetogradient effect-based high-resolution integrated sensors”, Sensors and Actuators A: Physical, Vol. 142, March 2008, pp.173-177.
    [36] G. M. Sung, and C. P. Yu, “2-D Differential Folded Vertical Hall Device Fabricated on a P-Type Substrate Using CMOS Technology,” IEEE Sensors Journal, vol. 13, No. 6, Jun. 2013, pp. 2253-2262.
    [37] C. Sander, R. Raz, P. Ruther, and O. Paul, “Fully Symmetric Vertical Hall Devices in CMOS Technology,” IEEE Sensors, Nov. 2013, pp. 1–4.
    [38] L. Osberger, V. Frick, M. Madec, and L. Hébrard, “High resolution, low offset Vertical Hall device in Low-voltage CMOS technology,” in proc. IEEE 13th Int. Conf., Jun. 2015, pp. 1-4.
    [39] H. Heidari, E. Bonizzoni, U. Gatti, and F. Maloberti, “Analysis and Modeling of Four-Folded Vertical Hall Devices in Current Domain,” in proc. Ph. D. Research in Microelectronics and Electronics Int. Conf., Jul. 2014, pp. 1-4.
    [40] H. Heidari, U. Gatti, and F. Maloberti, “Sensitivity Characteristics of Horizontal and Vertical Hall Sensors in the Voltage- and Current-Mode”, in proc. Ph. D. Research in Microelectronics and Electronics Int. Conf., July 2015, pp. 330-333.
    [41] C. Sander, C. Leube and O. Paul, “Novel Compact Two-Dimensional CMOS Vertical Hall Sensor,” in proc. Solid-State Sensors, Actuators and Microsystems Int. Conf., Jun. 2015, pp. 1164-1167.

    下載圖示
    QR CODE