研究生: |
陳建豪 Jian-Hao Chen |
---|---|
論文名稱: |
綠能車用多能源補充站系統設計與實驗研究 System design and experimental assessment of multiple energy supply station for green vehicles |
指導教授: |
洪翊軒
Hung, Yi-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 綠色能源 、機電整合 、系統設計 、節能車輛 、多能源補充站 |
英文關鍵詞: | green energy, mechatronics, system design, energy-saving vehicle, multi-energy supply station |
論文種類: | 學術論文 |
相關次數: | 點閱:209 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要建置一套車用多能源補充站系統,建置能源有電能、高壓空氣能及氫氣能,達到一站多重能源補充機制。首先,電能系統架構設計有:快速充電、一般充電及鋰電池交換,提供使用者三種選擇機制;高壓空氣能系統架構設計有:高壓氣體充填及車用攜帶式高壓鋼瓶交換,提供使用者二種選擇機制;氫氣能系統架構設計,設有高壓氫氣鋼瓶充填、產氫機產氫充填及車用儲氫合金罐交換使用,提供使用者三種選擇機制。
機電整合部分,設計電能控制系統與氣流系統。電能補充站控制系統有:快速充電器、一般充電器、按鈕開關、電壓及電流顯示器,接收110 ACV電源提供系統所需能源,系統中有二組快速充電及四組一般充電接頭;高壓空氣補充站系統控制有:電磁閥、壓力傳送器、流量傳送器、增壓缸及按鈕開關,提供3組高壓空氣快速充填接頭;氫能補充站系統控制有:產氫機、流量顯示器、壓力顯示器、按鈕開關及燃料電池,由100 ACV提供氫能系統元件所需之能源。
主體外觀建置選用防火木材,於主體外裝置排氣風扇加強空氣流通避免元件過熱。接著將進行綠能車輛示範運行,以驗證本平台之能源補充效果。本研究結果達有效提供一站多能源補充機制,能有效減少能源補充建置據點,改善綠色動力車輛能源補充困難,即可達到綠色動力車輛長途續航,未來將進行三能量互流及能源填充監控驗證。
This research mainly constructs a vehicle-used multi-energy supply system including electric energy, air energy and hydrogen energy for the purpose of providing various energy sources. First, the electric system consists of the fast charger, normal charger and exchangeable batteries for three mode selections. The high-pressure air system consists of: low-pressure air storage, pressure-boost device and the high-pressure air storage. The low-pressure air delivered to the high pressure tank via the pressure boost device. Therefore, two modes can be selected: high-pressure air supply and high-pressure tank exchange. For the hydrogen energy system, a hydrogen producer and a high-pressure hydrogen tank are provided for the hydrogen supply. Two modes are selected: hydrogen rapid supply and metal-hydride exchange.
For the mechatronics, the electric supply station consists of 6 connections for fast/normal chargers; for the high-pressure air system, 110 ACV power is provided for the on/off of air flow. The air flow system separates into three paths with three quick connectors. For the hydrogen energy supply, the control elements receives 110 ACV for the on/off of hydrogen flow. By a switch design, users can select the supply modes.
The station was covered with explosion-proof box. A fan was mounted for the force convection in order to avoid overheats of elements. Next, green vehicles were used for demonstration operation to proof the effect of the energy supply of the station. This research shows that it can provide multiple-type energy sources so that the number of supply stations can be reduced. The green vehicle can be easily charged for the long range mileage. The energy flow among three stations and the supervision system will be developed in the future.
[1] 京都議定書http://www.tri.org.tw/unfccc/download/kp_c.pdf。
[2] 經濟部能源局,能源報導, 「金屬儲氫裝置」與「中央充填廠認驗證」資訊網,2011,05,http://energymonthly.tier.org.tw/outdatecontent.asp?ReportIssue=201105&Page=20。
[3] 廖泳棠,電動車充電站直流微電網電力調度研究,碩士論文,國立中山大學電機工程學系,高雄,2012。
[4] Schroeder, A., & Traber, T. (2012). The economics of fast charging infrastructure for electric vehicles. Energy Policy, 43, 136-144.
[5] Yang, S., Yao, J., Kang, T., & Zhu, X. (2014). Dynamic operation model of the battery swapping station for EV (electric vehicle) in electricity market. Energy,65, 544-549.
[6] 環保新動力-壓縮空氣引擎資訊網
http://163.20.78.180/special/envi_epaper/9802/7.htm。
[7] 沈毓達,氣壓馬達系統設計與應用,博士論文,國立中央大學機械工程系,桃園,2010。
[8] 鄭耀宗,燃料電池與電動車輛,科學發展,367期,2003,pp.20-25。
[9] Drolia, A., Jose, P., & Mohan, N. (2003, November). An approach to connect ultracapacitor to fuel cell powered electric vehicle and emulating fuel cell electrical characteristics using switched mode converter. In Industrial Electronics Society, 2003. IECON'03. The 29th Annual Conference of the IEEE(Vol. 1, pp. 897-901). IEEE.
[10] Baker, J. (2008). New technology and possible advances in energy storage.Energy Policy, 36(12), 4368-4373.
[11] Guo, L., Calo, J. M., Kearney, C., & Grimshaw, P. (2014). The anodic reaction zone and performance of different carbonaceous fuels in a batch molten hydroxide direct carbon fuel cell. Applied Energy, 129, 32-38.
[12] Heywood, J. B. (2010, June). Assessing the fuel consumption and GHG of future in-use vehicles. In Energy and Sustainable Development: Issues and Strategies (ESD), 2010 Proceedings of the International Conference on (pp. 1-14). IEEE.
[13] Lee, D. H., Park, S. Y., Hong, J. C., Choi, S. J., & Kim, J. W. (2013). Analysis of the energy and environmental effects of green car deployment by an integrating energy system model with a forecasting model. Applied Energy, 103, 306-316.
[14] Suggs, C. R. (1994, March). Electric vehicles-driving the way to a cleaner future. In Southcon/94. Conference Record (pp. 28-30). IEEE.
[15] Jia, L., Hu, Z., Song, Y., & Luo, Z. (2012, March). Optimal siting and sizing of electric vehicle charging stations. In Electric Vehicle Conference (IEVC), 2012 IEEE International (pp. 1-6). IEEE.
[16] Wang, Y., Li, J., Jiang, J., & Niu, L. (2005, September). Management information system of charging station for electric vehicle (EV). In Electrical Machines and Systems, 2005. ICEMS 2005. Proceedings of the Eighth International Conference on (Vol. 1, pp. 857-860). IEEE.
[17] Dong, J., Liu, C., & Lin, Z. (2014). Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data.Transportation Research Part C: Emerging Technologies, 38, 44-55.
[18] Dharmakeerthi, C. H., Mithulananthan, N., & Saha, T. K. (2014). Impact of electric vehicle fast charging on power system voltage stability. International Journal of Electrical Power & Energy Systems, 57, 241-249.
[19] Sadeghi-Barzani, P., Rajabi-Ghahnavieh, A., & Kazemi-Karegar, H. (2014). Optimal fast charging station placing and sizing. Applied Energy, 125, 289-299.
[20] Chen, H., Ding, Y., Li, Y., Zhang, X., & Tan, C. (2011). Air fuelled zero emission road transportation: A comparative study. Applied Energy, 88(1), 337-342.
[21] Takemura, F., Pandian, S. R., Nagase, Y., Mizutani, H., Hayakawa, Y., & Kawamura, S. (2000). Control of a hybrid pneumatic/electric motor. In Intelligent Robots and Systems, 2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ International Conference on (Vol. 1, pp. 209-214). IEEE.
[22] Patilaya, T. I., Pham, T. T., Nguyen, M. N., Wu, Z., Zhu, Y., “Alliance catering at deakin:the economic of university cafeterias,”Deakin Paper on International Business Economics, Vol. 3, (2010) pp. 26-33。
[23] Lu, C. H., Hwang, Y. R., Shen, Y. T., “Backstepping sliding mode tracking control of a vane-type air motor X-Y table motion system,”ISA Transactions, Vol. 50, (2011) pp. 278-286。
[24] Hwang, Y. R., Shen, Y. D., & Jen, K. K. (2008). Fuzzy MRAC controller design for vane-type air motor systems. Journal of Mechanical Science and Technology, 22(3), 497-505.
[25] Hung, Y. H., Tung, Y. M., & Li, H. W. (2014). A real-time model of an automotive air propulsion system. Applied Energy, 129, 287-298.
[26] Shen, Y. T., & Hwang, Y. R. (2009). Design and implementation of an air-powered motorcycles. Applied Energy, 86(7), 1105-1110.
[27] Huang, K. D., Tzeng, S. C., & Chang, W. C. (2005). Energy-saving hybrid vehicle using a pneumatic-power system. Applied Energy, 81(1), 1-18.
[28] Pehr, K., Sauermann, P., Traeger, O., & Bracha, M. (2001). Liquid hydrogen for motor vehicles—the world's first public LH< sub> 2</sub> filling station.International Journal of Hydrogen Energy, 26(7), 777-782.
[29] Paganelli, G., Guezennec, Y., & Rizzoni, G. (2002). Optimizing control strategy for hybrid fuel cell vehicle (No. 2002-01-0102). SAE Technical Paper.
[30] Bauman, J., & Kazerani, M. (2008). A comparative study of fuel-cell–battery, fuel-cell–ultracapacitor, and fuel-cell–battery–ultracapacitor vehicles. Vehicular Technology, IEEE Transactions on, 57(2), 760-769.
[31] Thounthong, P., Chunkag, V., Sethakul, P., Davat, B., & Hinaje, M. (2009). Comparative study of fuel-cell vehicle hybridization with battery or supercapacitor storage device. Vehicular Technology, IEEE Transactions on,58(8), 3892-3904.
[32] Chan, C. C., Bouscayrol, A., & Chen, K. (2010). Electric, hybrid, and fuel-cell vehicles: Architectures and modeling. Vehicular Technology, IEEE Transactions on, 59(2), 589-598.
[33] Chau, K. T., & Wong, Y. S. (2001). Hybridization of energy sources in electric vehicles. Energy Conversion and Management, 42(9), 1059-1069.
[34] Lucas, A., Neto, R. C., & Silva, C. A. (2013). Energy supply infrastructure LCA model for electric and hydrogen transportation systems. Energy, 56, 70-80.
[35] Zheng, J., Ye, J., Yang, J., Tang, P., Zhao, L., & Kern, M. (2010). An optimized control method for a high utilization ratio and fast filling speed in hydrogen refueling stations. International Journal of Hydrogen Energy, 35(7), 3011-3017.
[36] 陳重安智慧型油電複合動力機車之研製 國立臺北科技大學車輛工程系所碩士論文,中華民國一0一年
[37] Kuby, M., & Lim, S. (2005). The flow-refueling location problem for alternative-fuel vehicles. Socio-Economic Planning Sciences, 39(2), 125-145.
[38] 刁海、崔國起、陳光輝、王陽,摩托車空氣阻力係數的測試,小型內燃機與摩托車,第三十四卷,第二期,2005,第8-10頁。