簡易檢索 / 詳目顯示

研究生: 張睿中
Chang Jui-Chung
論文名稱: 以X光吸收光譜分析燃料電池陰極觸媒PtxRh1-x之表面組成與電化學催化特性暨以CuInS2、CdS、ZnO之奈米晶體製備全無機薄膜太陽能電池
Studied the Surface Composition and Electrochemistry Activity of PtxRh1-x as Cathode Catalyst by X-ray Absorption Spectrum AndAll Inorganic Thin Film Solar Cell fabricated by CuInS2, CdS, and ZnO Nanocrystals
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 149
中文關鍵詞: 燃料電池觸媒X光吸收光譜太陽能電池無機奈米晶體電化學催化
論文種類: 學術論文
相關次數: 點閱:282下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇同時針對燃料電池陰極觸媒PtRh以及以CIS、ZnO、CdS等全無機材料製成的薄膜太陽能電池,提出研究。
    作為陰極觸媒的PtRh是一種比純Pt有更好催化效果的合金材料,此外,由實驗結果,我們發現它有更佳的甲醇耐性。我們利用液相合成法,並且利用CV、LSV等方式觀察甲醇催化及氧氣還原反應等反應之電化學數據,此外,我們佐以XRD、TEM與XAS等儀器分析材料結構,並以XAS中的EXAFS數據分析結構及表面組成。催化方面,以PtRh31催化效果最好,並且同時展現最佳的甲醇耐性,為這系列觸媒中最為理想的。
    II-IV族半導體在文獻中被廣泛討論,而我們所選用的CuInS2即為一種低毒性的II-IV族半導體。我們利用液相合成的CIS作為吸收層,並且在其下層疊CdS層以及ZnO層,最後則為ITO玻璃的多層構造,製作出全無機薄膜太陽能電池。無機太陽能電池比起有機太陽能電池更為耐用,是未來太陽能電池發展的趨勢。我們利用了UV-Vis、IR等光譜儀器測量其光譜性質,並且以SEM分析其結構分層。最後,我們自行製作的全無機太陽能電池元件,在經過鍛燒除去有機物之後,在AM1.5G的模擬光源下,其光電轉換效率為0.088%。

    In this paper, we concentrated on PtxRh1-x as the fuel cell cathode catalyst and used CIS, CdS, and ZnO to construct the all inorganic thin film solar cell both.
    As cathode catalyst, PtRh is an alloy that has better catalysis ability than pure Pt. In addition, according to the experiment result, we found that it has better tolerance to methanol. We employed solution phase synthesis, and used the CV, LSV, and other such method to observe the methanol oxidation reaction, oxygen reduction reaction, and other such electrochemical data. Furthermore, we combined with the XRD, TEM, XAS, and other such instruments to determine the structure of material, and used the EXAFS of XAS to analysis the structure and surface composition. In catalysis, the PtRh31 has the best catalysis ability, and displayed the best tolerance to methanol, it is the most ideal catalyst.
    The II-IV semiconductors are widely discussed in many paper, and the material CuInS2 what we select is a low toxic II-IV semiconductor. We synthesized CIS as absorption layer, and layered CdS and ZnO under CIS layer, at last there is ITO glass at the bottom to construct the multilayer structure fabricate all inorganic thin film solar cell. The inorganic solar cells are more durable than organic solar cells, that will be the trend of developing solar cells in the future. We used the UV-Vis, IR, and other such spectrometers to analyze the spectral character, and used SEM to observe the layer structure. At last, the all inorganic solar cell we fabricated displayed the power conversion efficiency of 0.088% under simulated AM1.5G illumination after it was treated with annealing.

    總目錄……………………………………………………………………I 圖目錄…………………………………………………………..……..VII 中文摘要……………………………………………………………….XII 英文摘要……………………………………………………………...XIII 第一部分 以X光吸收光譜分析燃料電池陰極觸媒PtxRh1-x之表面組成與電化學催化特性……………………..……………………………..1 第一章 緒論……………………………………………………………..2 1.1 前言…………………………………………………………..……2 1.2 燃料電池簡介……………………………………………..………3 1.2.1 燃料電池的種類…………………………………………6 1.2.2 燃料電池內的電化學反應………………………………7 1.3 直接甲醇燃料電池( Direct methanol fuel cell ) …………….….12 1.3.1 DMFC陽極觸媒………………………………………..14 1.3.2 DMFC電解質…………………………………………..20 1.3.3 DMFC陰極材料………………………………………..22 1.4 研究動機與方法…………………………………………..……..25 第二章 原理............................................................................................26 2.1 X光吸收光譜原理............................................................................26 2.1.1 X光吸收近邊緣結構(XANES)...............................................26 2.1.2 延伸X光吸收微細結構(EXAFS)..........................................32 2.1.3 數據分析..................................................................................41 2.2 粉末X光繞射光譜(Powder X-ray Diffration)................................37 2.3 穿透式電子顯微鏡(Transmission electron Microscopy).................39 2.4 電化學原理.......................................................................................41 2.4.1 循環伏安法..............................................................................41 2.4.2 極化曲線..................................................................................45 2.4.3 旋轉盤電極..............................................................................46 第三章 實驗部分....................................................................................49 8.1 實驗藥品及設備...............................................................................49 3.1.1 實驗藥品..................................................................................49 3.1.2 實驗設備..................................................................................50 8.2 實驗方法...........................................................................................51 8.3 合成PtRh奈米粒子.........................................................................52 8.4 觸媒製備...........................................................................................53 8.5 材料鑑定與分析...............................................................................53 3.5.1 XRD分析.............................................................................53 3.5.2 TEM分析.............................................................................54 8.6 電化學特性測試...............................................................................54 3.6.1 電極之清洗............................................................................55 3.6.2 電極片製備............................................................................56 3.6.3 電化學特性量測....................................................................56 3.6.4 循環伏安................................................................................57 3.6.5 甲醇氧化極化曲線................................................................57 3.6.6 氧氣還原測試........................................................................57 8.7 X光吸收光譜(XAS).........................................................................57 3.7.1 EXAFS之曲線適配............................................................58 3.7.2 以X光吸收光譜分析觸媒結構.........................................58 第四章 結果與討論................................................................................62 4.1 合成PtxRh1-x奈米粒子...................................................................62 4.2 材料之晶相與形態分析..................................................................63 4.3 XANES之吸收係數........................................................................67 4.4 X光吸收光譜...................................................................................67 4.4.1 X光吸收近邊緣結構(XANES) .........................................67 4.4.2 延伸X光吸收微細結構(EXAFS) ....................................69 4.5 觸媒材料之結構比較......................................................................74 4.6 電化學特性量測結果......................................................................76 4.6.1 循環伏安法..........................................................................76 4.6.2 陰極觸媒電化學活性之比較..............................................78 4.6.3 陽極觸媒電化學活性之比較..............................................81 第五章 結論............................................................................................86 5.1 結論...................................................................................................86 5.2 未來展望...........................................................................................87 第二部分 以CuInS2、CdS、ZnO之奈米晶體製備全無機薄膜太陽能電池.........................................................................................................88 第六章 緒論...........................................................................................89 6.1 前言………………………………………………………………..89 6.2 太陽能電池的發展………………………………………………..91 6.2.1 無機太陽能電池………………………………….…..91 6.2.2 有機太陽能電池……………………………………..93 6.3 研究動機與方法…………………………………………………..98 第七章 原理 7.1 真空蒸鍍機(Vacuum Evaporation)...................................................99 7.2 太陽能電池的量測與分析.............................................................101 第八章 實驗部分 8.1 實驗藥品及設備.............................................................................103 8.1.1 實驗藥品................................................................................104 8.1.2 實驗設備................................................................................104 8.2 CuInS2合成.....................................................................................105 8.3 ZnO奈米顆粒合成.........................................................................107 8.3.1 合成前驅物Zn-Oleate...........................................................107 8.3.2 合成ZnO奈米顆粒...............................................................107 8.4 CdS奈米顆粒合成.........................................................................107 8.5 薄膜太陽能電池元件製作及光電測試.........................................108 第九章 結果與討論..............................................................................110 9.1 合成薄膜太陽能電池各層所需奈米材料.....................................110 9.2 材料之晶相與形態分析.................................................................110 9.3 光譜分析.........................................................................................114 9.3.1 UV-Vis吸收光譜...................................................................114 9.3.2 IR吸收光譜...........................................................................119 9.4 SEM分析........................................................................................123 9.5 全無機薄膜太陽能電池之元件量測.............................................126 9.6 全無機薄膜太陽能電池元件探 討.............................127 第十章 結論..........................................................................................128 10.1 CIS全無機薄膜太陽能電池.........................................................128 10.2 未來展望........................................................................................128 第十一章 參考資料............................................................................130

    [1]. Wu, H.; Zhou, W.; Wang, K.. NANOTECHNOLOGY. 2009, 20, 20.
    [2]. Carrette, L.; Friedrich, K. A.; and Stimming, U.; Fuel Cell 1(2001) 1.
    [3]. 李世光,孫美芳,"我國發展新興科技微機電系統與奈米技術的人才培育與發展策略初探~”,生物醫學報導,14 (2002) 5.
    [4]. 薛康琳, 燃料電池內的電化學反應-觸媒與反應動力, CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) March. 62 (2004) 149.
    [5]. Hogarth, M. P.; Ralph, T. R. Platinum Met. Rev. 2002, 46, 146.
    [6]. B.L. Garcia, V.A. Sethuraman, J.W.Weidner, R.E. White, R. Dougal, Journal of Fuel Cell Science and Technology 1 (2004) 43–48.
    [7]. Yang, H.; Vante, A. N.; Lége, J. M.; Lamy, C. J. Phys. Chem. B 2004, 108, 1938.
    [8]. Li, W.; Liang, C.; Zhou, W.; Qiu, J.; Zhou, Z.; Sun, G.; Xin, Q., J. Phys. Chem. B, 2003, 107, 6292.
    [9]. Hubert, A.; Gasteiger, N.; Markvoic, N. M.; Philip, N.; Ross, P. N., J. Phys. Chem., 1995, 99, 8290.
    [10]. Steigerwalt, E. S.; Deluga, G. A.; Cliffel, D. E.; Lukehart, C. M., J. Phys. Chem B., 2001, 105, 8097.
    [11]. Burstein, G. T.; Barnett, C. J.; Kucernak, A. R.; Williams, K. R., Catal. Today, 1997, 38, 425.
    [12]. Liu, R.; Iddir, H.; Fan, Q.; Hou, G.; Bo, A.; Ley, K. L.; Smotkin, E. S., J. Phys. Chem. B, 2000, 104, 3518.
    [13]. S. Wasmus and A. Kuver, J. Electroanal. Chem. 461 (1999), p. 14.
    [14]. Lin, W. F.; Zei, M. S.; Eiswirth, M.; Ertl, G.; Iwasita, T.; Vielstich, W., J. Phys. Chem. B, 1999, 103, 6968.
    [15]. Gasteiger, H. A.; Markovic, N. M.; Ross, P. N., Jr.; Cairns, E., J. Phys. Chem., 1993, 97 12020.
    [16]. Rauhe, B. R.; McLarnon, F. R.; Cairns, E. J., J Electrochem. Soc., 1995, 142, 1073.
    [17]. Brankovic, S. R.; Marinkovic, N. S.; Wang, J. X.; Adžić, R. R., J. Electroanal. Chem., 2002, 532, 57.
    [18]. Lu, C.; Rice, C.; Masel, R. I.; Babu, P. L.; Waszczuk, P.; Kim, H. S.; Oldfoeld, E.; Wieckowaki, A., J. Phys. Chem. B, 2002, 106, 9581.
    [19]. Huang, J.; Liu, Z.; He, C.; Gan, L. M. J. Phys. Chem. B, 2005, 109, 16644.
    [20]. Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L.; Zhong, C. J. Langmuir, 2006, 22, 2892.
    [21]. Liu, Z.; Guo, B.; Hong, L.; Lim, T. H. Electrochemistry Communications, 2006, 8, 83.
    [22]. Santiago, E. I.; Giz, M. J.; Ticianelli, E. A. Journal of solid state electrochemistry , 2003, 7, 607.
    [23]. Yim, S. D.; Park, G. G.; Sohn, Y. J.; Lee, W. Y.; Yoon, Y. G.; Yang, T. H.; Um, S.; Yu, S. P.; Csinternational Jourmal of hydrogen energy, 2005, 30, 1345.
    [24]. (a) Siani, A.; Captain, B.; Alexeev, O. S.; Stafyla, E.; Hungria, A. B.; Midgley, P. A.; Thomas, J. M.; Adams, R. D.; Amiridis, M. D. Langmuir, 2006, 22, 5160-5167. (b) Deivaraj, T. C.; Chena, W.; Lee, J. Y. J. Mater. Chem., 2003, 13, 2555.
    [25]. Hideki A., Futoshi M., Laif R. A., Scott C. W., Héctor D. A., Francis J. D., J. AM. CHEM. SOC. 2008, 130, 5452–5458
    [26]. Carrete, L.; Andreas, Friedrich, K. A.; Stimming, U., Chem. Phys. Chem., 2000, 1, 162.
    [27]. Ledjeff-Hey, K.; Heinzel, A., J. Power Sources, 1996, 61, 125.
    [28]. Watanabe, M.; Furuuchi, Y.; Motoo, S., J. Electroanal. Chem., 1985, 191, 367.
    [29]. Watanabe, M.; Uchida, M.; Motoo, S., J. Electroanal. Chem., 1987, 229, 395.
    [30]. Chu, D.; Gilman, S., J. Electrochem. Soc., 1996, 143, 1685.
    [31]. Venkataraman, R.; Kunz, H. R.; Feton, J. M., J. Electrochem. Soc., 2003, 150, A278.
    [32]. Ley, K. L.; Liu, R.; Pu, C., J. Electrochem. Soc., 1997, 144, 1543.
    [33]. Hamnett, A. Catal. Today 1997, 38, 445.
    [34]. Liang, Yongmin.; Zhang, H.; Tian, Z.; Zhu, X.; Wang, X.; Yi, B. J. Phys. Chem. B, 2006, In ASAP.
    [35]. J. Zhu, F.Y. Cheng, Z.L. Tao, J. Phys. Chem. C 112 (2008) 6337.
    [36]. Alayoglu, S.; Eichhorn, B.. J. Am. Chem. Soc. 2008, 130, 17479–17486.
    [37]. Shim, J.; Yoo, D. Y.; Lee, J. S., Electrochim. Acta., 2000, 45, 1943.
    [38]. Mukerjee, S.; Srinivasan, S.; Soriaga, M. P.; McBreen, J., J. Phys. Chem., 1995, 99, 4577.
    [39]. Landsman, D. A.; Luczak, F. J.; U.S. Patent (1982).
    [40]. Elisabete, I. Santiago,; Laudemir, C. Varanda,; and H. Mercedes, Villullas,; J. Phys. Chem. C ,2007,111, 3146.
    [41]. Junliang, Zhang,; Miomir, B. Vukmirovic,; Kotaro, Sasaki,; Anand, Udaykumar, Nilekar,;Manos, Mavrikakis,; and Radoslav, R. Adzic,; J. AM. CHEM. SOC., 2005,127, 12480.
    [42]. Takako T.; Hiroshi I.; Hiroyuki U.; Masahiro W.,J. Electrochem. Soc., 1999, 146, 3750-3756
    [43]. P. Bogdanoff, I. Herrmann, M. Hilgendorff, I. Dorbandt, S. Fiechter, and H. Tributsch. J. New Mater. Electrochem. Syst., 7, 85 (2004).
    [44]. G. Zehl, P. Bogdanoff, I. Dorbandt, S. Fiechter, K.Wippermann, C. Hartnig. J. Appl. Electrochem., 2007; 37, 1475–1484.
    [45]. Watanabe, M.; Uchida, M.; Motoo, S. J. Electroanal. Chem. 1987, 29, 395.
    [46]. Antolini E.; Cardellini, F. J. Alloys Compd. 2001, 315, 118.
    [47]. 彭文權, “以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒”,1997.
    [48]. Tran, T. D.; Langer, S. H., Anal. Chem., 1993, 65, 1805.
    [49]. Markovic´, N. M; Grgur, B. N; Lucas, C. A.; Ross, P. N., J. Phys. Chem. B, 1999, 103, 487.
    [50]. 胡啟章, “電化學原理與方法” , 五南圖書出版公司, 2002.
    [51]. Hwang, B.-J.; Sarma, L. S.; Chen, J.-M.; Chen, C.-H.; Shih, S.-C.; Wang, G.-R.; Liu, D.-G.; Lee, J.-F.; Tang, M.-T., J. Am. Chem. Soc., 2005, 127, 11140.
    [52]. R. Gomez, F.J. Gutierrez de Dios, J.M. Feliu, Electrochim. Acta 49 (2004) 1195.
    [53]. N. S. Lewis Science 2007, 315,798.
    [54]. R. D. Schaller, M. A. Petruska, V. I. Klimov Appl. Phys. Lett. 2005, 87, 253102.
    [55]. B. O’Regan, M. Grätzel Nature 1999, 353, 737
    [56]. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang Nature Materials 2005, 4, 455.
    [57]. A.. Yakimov, S. R. Forrest, Appl. Phys Lett. 2002,80,1667-1669
    [58]. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl Science 1992, 258, 1474.
    [59]. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger Science 1995, 270, 1789.
    [60]. C. Y. Kwong, A. B. Djurisic, P. C. Chui, K. W. Cheng, W. K. Chan Chem. Phys.Lett. 2004, 384,372.
    [61]. W. J. E. Beek, M. M. Wienk, R. A. J. Janssen J. Mater. Chem. 2005, 15, 2985.
    [62]. W. U. Huynh, J. J. Dittmer, A. P. Alivisatos Science 2002, 295, 24254.
    [63]. I. Gur, N. A. Fromer, C. P Chen, A. G. Kanaras, A. P. Alivisatos Nano Lett. 2007, 7, 409.
    [64]. Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Schmidtke, J. P.; Dunn, L.; Dodabalapur, A.; Barbara, P. F.; Korgel, B. A. J. Am. Chem. Soc. 2008, 130, 16770–16777.
    [65]. Choi, S.; Kim, E.; Park, J.; An, K.; Lee, N.; Kim, S. C.; Hyeon, T. J. Phys. Chem. B 2005, 109, 14792.
    [66]. K. T. Yong, Y. Sahoo, M. T. Swihart and P. N. Prasad, J. Phys. Chem. C, 2007, 111, 2447.
    [67]. C. Platzer-Bjorkman, J. Lu, J. Kessler, L. Stolt, Thin Solid Films 431–432 (2003) 321.

    無法下載圖示 本全文未授權公開
    QR CODE