簡易檢索 / 詳目顯示

研究生: 葉時賢
Yeh, Shyr-Shyan
論文名稱: 有機鈣鈦礦/鐵鈀合金-異質雙層薄膜系統之熱穩定度、光學及磁性分析
Magnetic and optical analysis of organic lead halide perovskite coated on FePd alloy
指導教授: 林文欽
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 46
DOI URL: http://doi.org/10.6345/NTNU202001206
論文種類: 學術論文
相關次數: 點閱:218下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近期研究在有機鈣鈦礦材料上的能量轉換率、能隙的可調性及界面的載流能力有令人矚目的成果。有鑒於有機鈣鈦礦材料的特性,我們開始於物理氣相沉積製備的鐵鈀合金上利用旋塗法將MAPbBr3鈣鈦礦成長於頂層,形成有機鈣鈦礦/鐵鈀合金-異質雙層薄膜。而樣品的表面形貌藉由原子力顯微鏡(AFM)觀察到MAPbBr3鈣鈦礦以柱狀奈米結構且不均勻分布的方式成長於鐵鈀合金上方。
    本實驗在於觀察樣品的磁性與光學在不同退火溫度下(100~170 ℃)的轉變。首先使用磁光柯爾顯微鏡發現矯頑場與磁光柯爾訊噪比隨著溫度有所改變。其中磁光柯爾訊噪比在100~120℃之間的變化量最為明顯。再來透過光致螢光(PL)的數據分析得到在100~120℃之間的光訊號強度下降較其他溫度區間明顯(約3倍) ,以上現象源自於在這期間MAPbBr3鈣鈦礦界面擴散至鐵鈀合金層。

    Recent studies have shown promising results with regards to the power conversion efficiency, band-gap tunability, and interfacial charge carrier ability of organic lead halide perovskites. In light of these fundamental abilities, we fabricate a heterostructure thin film consisting of both magnetic and optical capabilities. The MAPbBr3 (perovskite) was spin-coated on top of the FePd alloy layer (deposited via PVD onto a SiO2 substrate). The atomic force microscopy (AFM) analysis reveals discrete pillar-like nanostructures of the perovskite material that occurs non-uniformly across the FePd under layer. When post-annealed to high temperatures (100-170˚C), the resultant magnetic hysteresis loops show the coercivity enlargement of FePd, with the interfacial diffusion of perovskite into FePd between 100 ˚C and 120˚C post-annealing. Our observations also show the interface instability of MAPbBr3/FePd and that the enhanced Kerr noise/signal ratio asserts the inter-diffusion of the perovskite into the FePd under layer upon high temperature annealing of 100-170˚C. The PL characterization data signifies a subsequent decomposition of the perovskite material during these post-annealing temperatures (100-170˚C), where the wavelength peak intensity decreased by multiples of 3 between 100 ˚C and 120˚C post-annealing.

    Acknowledgements i 中文摘要 ii Abstract iii 1.Introduction 1 2.Basic Concepts 2.1 Magnetic Anisotropy 2 2.2 Magnetic Hysteresis Loop 7 3. Apparatus and Theory 3.1 Ultra-high vacuum system 9 3.2 Spin-coating deposition 10 3.3 Magneto-optical Kerr Effect (MOKE) 11 3.4 Magneto-optical Kerr Microscope 15 3.5 Atomic Force Microscopy (AFM) 18 3.6 Photoluminescence and Raman spectroscopy 21 4.Results 4.1 Atomic Force Microscopy (AFM) of MAPbBr3/FePd/SiO2 25 4.2 Magnetic Hysteresis observation of MAPbBr3/FePd/SiO2 thin film 28 4.3 Magnetic Hysteresis observation of FePd/SiO2 thin film 32 4.4 Photoluminescence spectroscopy of MAPbBr3/FePd/SiO2 36 4.5 Magneto-optical Kerr Effect (MOKE) with blue laser excitation 39 5. Discussion 41 6. Summary and conclusion 44 7. References 45

    References
    [1] Wang J, Pan X, Zhang C, Guo H, Vardeny ZV. Light-controlled spintronic device based on hybrid organic–inorganic perovskites. J Photonics Energy 2018;8:1.
    [2] Wang J, Zhang C, Liu H, Liu X, Guo H, Sun D, et al. Tunable Spin Characteristic Properties in Spin Valve Devices Based on Hybrid Organic–Inorganic Perovskites. Adv Mater 2019;31:1–6.
    [3] Yang Y, Feng S, Li Z, Li T, Xiong Y, Cao L, et al. Unexpected Outstanding Room Temperature Spin Transport Verified in Organic-Inorganic Hybrid Perovskite Film. J Phys Chem Lett 2019;10:4422–8.
    [4] Náfrádi B, Szirmai P, Spina M, Lee H, Yazyev O V., Arakcheeva A, et al. Optically switched magnetism in photovoltaic perovskite CH 3 NH 3 (Mn:Pb)I 3. Nat Commun 2016;7.
    [5] Kavadiya S, Strzalka J, Niedzwiedzki DM, Biswas P. Crystal reorientation in methylammonium lead iodide perovskite thin film with thermal annealing. J Mater Chem A 2019;7:12790–9.
    [6] Bland JAC, Heinrich B. Ultrathin magnetic structures I: An introduction to the electronic, magnetic and structural properties. 2005.
    [7] den Broeder, F.J.A, Hoving, W, Bloemen PJH. Magnetic anisotropy of Ni/Al multilayers. J Magn Magn Mater 1991;93:562–70.
    [8] Chappert C, Bruno P. Magnetic anisotropy in metallic ultrathin films and related experiments on cobalt films (invited). J Appl Phys 1988;64:5736–41.
    [9] Kohlhepp J, Gradmann U. Magnetic surface anisotropies of Co(0001)-based interfaces from in situ magnetometry of Co films on Pd(111), covered with ultrathin films of Pd and Ag. J Magn Magn Mater 1995;139:347–54.
    [10] Young, Hugh D, Freedman RA. Sears and Zemansky’s University Physics with Modern Physics. 2012.
    [11] Surface T, Society S. Compendium of Surface and Interface. eBook. Tokyo, Japan: Springer; 2018.
    [12] Voigtländer B. Scanning Probe Microscopy. Springer; 2015.
    [13] Aoki T. Photoluminescence Spectroscopy. In: Kaufmann EN, editor. Charact. Mater., vol. 3. 2nd ed., John Wiley & Sons Inc.; 2012.
    [14] John R. Ferraro KN and CWB. Introductory Raman spectroscopy. 2nd ed. Academic Press; 2003.
    [15] Perkowitz S. Optical Characterization of Semiconductors : Infrared , Raman , and Photoluminescence Spectroscopy. USA: Academic Press Limited; 1993.
    [16] Cho H, Kim JS, Kim YH, Lee TW. Influence of A-site cation on the thermal stability of metal halide perovskite polycrystalline films. J Inf Disp 2018;19:53–60.
    50
    [17] Kim YH, Cho H, Heo JH, Im SH, Lee TW. Effects of thermal treatment on organic-inorganic hybrid perovskite films and luminous efficiency of light-emitting diodes. Curr Appl Phys 2016;16:1069–74.
    [18] Mhamdi A, Mehdi H, Bouazizi A, Garcia-Belmonte G. One-step methylammonium lead bromide films: Effect of annealing treatment. J Mol Struct 2019;1192:1–6.

    下載圖示
    QR CODE