簡易檢索 / 詳目顯示

研究生: 徐蕾蕾
Lei-Lei Hsu
論文名稱: 三芳香基醚類之官能化去保謢及引進新官能基反應的探討
指導教授: 陳建添
Chen, Chien-Tien
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2000
畢業學年度: 88
語文別: 中文
中文關鍵詞: 三芳香基甲基醚官能化去保護葡萄醣固相合成技術寡醣的連結合成
英文關鍵詞: trityl ether, functionally deprotected, (D)-glucose, solid state synthesis, the synthesis of oligosaccrides
論文種類: 學術論文
相關次數: 點閱:139下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    我們製備以Xanthene為模板的三芳香基甲基氯化物,並分別與2-苯基乙醇和3-苯基丙醇反應生成相對的三芳香基甲基醚之模式受質,而在環外芳香基則以對位有第三丁基或甲氧基取代苯環為主。我們研究這些受質與多種不同類型的親電子試劑進行官能化去保護的可行性,其中包括(未)飽和脂肪族、芳香族甲醯氯化物、三氟甲烷磺酸酯(ROTf)、磺醯氯,磷醯氯和矽烷基氯等。在所測試的五種溶劑系統中,以二氯甲烷和氰甲烷在進行官能化去保護時,反應較快速乾淨且產率較高。在親電子試劑方面,已有十五種可順利的將三芳香基甲基醚轉換成其相對的酯、醚、矽烷醚、磺酸酯和磷酸酯衍生物,尤其在後二者可更進一步轉換成疊氮和碘化物等。。
    更重要的是在芳香族甲醯氯類的官能化去保護中,我們能在苯環的對位位置順利引進硝基、甲氧基、溴基、氯甲基和乙烯基,因此能做更進一步的化學轉換;如硝基可經由還原變成銨基,而其可轉換成diazonium salts,進而引進多種官能基;甲氧基在去甲基後可與鹵烷進行SN2反應,或可轉換成triflate,然後進行Stille偶合;溴基可經由偶合反應,植入芳香環;氯甲基則能與親核試劑進行SN2反應;而乙烯基則能氧化成醛、酸或經hydroboration氧化成醇。
    從上述初步研究成果,我們更進一步研究以(D)-glucose為醣類模式系統,將生成之三芳香基甲基氯,與(D)-glucose於啶當溶劑下進行反應,保護(D)-glucose中一級醇成為三芳香基甲基醚,再將其餘二級醇以醋酸酐進行乙醯化(acetylation),並成功獲得接上醣類之產物。再和對乙烯基苯甲醯氯進行去保護反應,可得化合物89,並且化合物89已可成功地應用在寡醣的連結上。因此我們相信,此合成策略如配合上固相合成技術(solid state synthesis),即將三芳香甲基醇銜接至高分子樹脂上,將可大大提昇其應用與實用性,尤其在寡醣的連結合成上更能發揮所長。

    Abstract
    We prepared different types of triarylmethyl chlorides based on xanthene. They can transform into triarylmethyl ethers with 2-phenylethanol and 3-phenyl-1-propanol. These substrates can be functionally deprotected with various electrophiles, include unsaturated aliphatic, aromatic acyl chloride, triflate, sulfonyl chloride, phosphonyl chloride and silyl chlorides. Out of 5 different solvents investigated, dichloromethane and acetonitrile were found to be the best solvents leading to the highest yield and fast reaction. We have also developed a new type of triarylmethyl chlorides based on xanthene. We have successful transform triarylmethyl ether to relative esters, ethers, phosphonates and alkyl silyl ethers derivatives. More important, acyl chloride derivatives can be deprotected with concomitant introdution of nitro-, bromo-, methyl chloro- and ethylene. These derivatives may be further converted to other functions, nitro- compound reduce to amine group, and it can be transformed into diazonium salts or another functional groups. Methoxy group can proceed SN2 reaction with alkyl halide after deprotection of methoxy group. Besides, the bromo group can be introduced into the aromatic ring by coupling reaction. The resultant triarylmethyl ethers can be deprotected with concomitant introduction of a new functional groups such as esters, alkyl (silyl) ethers, sulfonates, and phosphonates. The last two derivatives may be further converted into azides and iodides. According to the initial results the synthetic methods are potentially applicable to hydrocarbon chemistry. Acorrding to the above results, we prepared the carbohydrates systems base on (D)-glucose and triarylmethyl chloride under pyridine. We can get compound 88 and it can treated with p-vinylbenzoyl chloride to get compound 89. Componud 89 have already successful used on the synthesis of oligosaccrides.

    目 錄 目錄 中文摘要 英文摘要 第一章 緒論 第一節 前言 1 第二節 保護基的介紹 1 第三節 三芳香基甲基碳陽離子的發展過程及反應機構 11 第二章 結果與討論 第一節 三芳香基甲基醚保護基的合成 19 第二節 三芳香基甲基醚的去保護反應研究 21 第三節 三芳香基甲基醚與各種親電子試劑進行官能化去保護之研究 27 第四節 三芳香基甲基醚接上醣類化學的初步結果與可能的應用 34 第五節 結論與展望 36 第三章 儀器設備實驗步驟與光譜數據 第一節 分析儀器 37 第二節 實驗步驟與光譜數據 39 參考文獻 79

    參考資料 :
    (1) Powell, R. W.; Needham, L. L.; Barnett W. E. Tetrahedron. 1972, 28, 419.
    (2) Greene, T. W.; Wut, P. G. M. Protective Groups in Organic Synthesis, 2nd, Wiley, New York, 1991.
    (3) Pless, J.; Sandoz, A. G. Helv. Chim. Acta. 1976, 59, 499.
    (4) Reese, C. B.; Chattopadhyaya, J. B.; Yau, L. J. Chem. Soc. Chem. Commun. 1978, 639.
    (5) Reese, C. B.; Chattopadhyaya, J. B. unpublished observations.
    (6) Barnett, W. E.; Needham, L. L. Chem. Commum. 1970, 1383
    (7) Barnett, W. E.; Needham, L. L. J. Org. Chem. 1971, 36, 4134.
    (8) Schafer, H. J.; Claus Van der Stouwe Tetrahedron Lett. 1979, 2643.
    (9) Letsinger, R. L.; Finnan, J. L. J. Am. Chem. Soc. 1975, 97, 7197.
    (10) Takaku, H.; Morita, K.; Sumiuchi, T. Chem. Lett. 1983, 1661.
    (11) Hernandez, O.; Chaudhary, S. K. Tetrahedron Lett. 1986, 27, 579.
    (12) Bessodes, M.; Komiotis, D.; Antonakis, K. Tetrahedron Lett. 1979, 95.
    (13) Blickenstaff, R.T. J. Am. Chem. Soc. 1960, 82, 3673.
    (14) MacCoss, M.; Cameron, D. J. Carbohydr. Res. 1978, 60, 206.
    (15) Sekine, M.; Hata, T. J. Org. Chem. 1987, 52, 946.
    (16) Bodanszky, M.; Bednarek, M. A. Int. J. Pept. Protein Res. 1982, 20, 434.
    (17) Ruiz-Gayo, M.; Albericio, F.; Pedroso, E.; Giralt, E. J. Chem. Soc. Chem. Commun. 1986, 1501.
    (18) Drey, C. N. C. in Peptides 1986: Proceedings of the 19th European Peptide Symposium, Proto Carras, Chalkidiki, Greece, August 31-September 5, 1986, Theodoropoulos, Ed., de Gruyter, Berlin and New York, 1987, 65.
    (19) Igeta, H.; Hiskey, R. G.; Mizoguchi, T. J. Org. Chem. 1966, 31, 1188.
    (20) Carpino, L. A.; Han, G. Y. J. Org. Chem. 1972, 37, 3404.
    (21) Atherton, E.; “The Fluorenylmethoxycarbonyl Amino Protecting Group,” in The Peptides. Academic Press, Orlando, FL, 1987, 9, 1-38.
    (22) Carpino, L. A. J. Org. Chem. 1980, 45, 4250.
    (23) Slusarchyk, W. A.; Applegate, H. E.; Cimarusti, C. M.; Dolfini, J. E.; Funke, P. T.; Koster, W. H.; Puar, M. S.; Young, M.G. J. Org. Chem. 1979, 44, 811.
    (24) Hanson, R. W.; Law, H. D. J. Chem. Soc. 1965, 7285.
    (25) Zervas, L.; Theodoropoulos, D. M. J. Am. Chem. Soc. 1956, 78, 1359.
    (26) Carpino, L. A.; Chao, H. G.; Tien, J. H. J. Org. Chem. 1989, 54, 4302.
    (27) Kurth, J.; Borhan, B.; Wilson, J. A.; Grasch, M. J.; Ko, Y.; Kurth, D. M. J. Org. Chem. 1995, 60, 7375.
    (28) Barlos, K.; Gatos, D.; Kapolos, S.; Papaphotiu, G.;Schafer, W.;Wenqing, Y. Tetrahedron Lett. 1982, 30. 3947.
    (29) Kunz, H.; Lohr, B.; Orlich, S. Synlett 1999, 1136.
    (30) Poirier, D.; Ciobanu, L. C.; Maltais, R. Org. Lett. 2000, 2, 445.
    (31) Zwanenburg, B.; Lawrence, C. F.; Nayak, S. K.; Thijs, L. Synlett 1999, 1571.
    (32) (a) Mukaiyama, T.; Kobayashi, S.; Murakami, M. Chem. Lett. 1984, 1759. (b) Mukaiyama, T.; Kobayashi, S.; Murakami, M. Chem. Lett. 1985, 447. (c) Kobayashi, S.; Murakami, M.; Mukaiyama, T. Chem. Lett. 1985, 1535. (d) Ohshima, M, Murakami, M.; Mukaiyama, T. Chem. Lett. 1985, 1871. (e) Kobayashi, S.; Matsui, S.; Mukaiyama, T. Chem. Lett. 1988, 1491. (f) Mukaiyama, T.; Akamatsu, H.; Han, J. S. Chem. Lett. 1990, 889.
    (33) Chen, C.-T.; Chao, S.-D.; Yen, K.-C. Synlett 1998, 924.
    (34) Chen, C.-T.; Chao, S.-D.; Yen, K.-C. J. Am. Chem. Soc. 1997, 119, 10341.
    (35) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207.
    (36) Chen, C.-T.; Chao, S.-D. J. Org. Chem. 1999, 64, 1090.
    (37) Stille, J. K. Angew. Chem. Int. Ed. Engl. 1986, 25, 508.
    (38) Scott, W. J.; McMurry, J. E. Acc. Chem. Res. 1988, 21, 47.
    (39) (a) Tzalis, D.; Tor, Y. Tetrahedron Lett., 1995, 360. 6017. (b) Tor, Y.; Joshi, H. S.; Jamshidi, R. Angew. Chem. Int. Ed. Engl. 1999, 38, 2722.
    (40) Roush, R.; Hunt, J. A. J. Am. Chem. Soc., 1996, 118, 9998.
    (41) Janda, K. D.; Gravert, D. J. Chem. Rev. 1997, 97, 489.
    (42) Still, W. C.; Kahnn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

    QR CODE