簡易檢索 / 詳目顯示

研究生: 鍾境晏
Ching, Ching-Yen
論文名稱: 藉由蛋白質體學中運用的奈流液相層析質譜技術探討全多孔式、熔融核心式與聚合物單層式管柱之分離特性
Evaluating the Separation Characteristics of Totally Porous, Fused-Core and Monolithic Columns Used in NanoLC/MS for Proteome Research
指導教授: 陳頌方
Chen, Sung-Fang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 73
中文關鍵詞: 液相層析連結質譜儀totally porous C18Fused-core單層式管柱苯乙烯與乙二烯苯共聚物
英文關鍵詞: LC-MS/MS, totally porous, Fused-core, monolithic, SDVB
論文種類: 學術論文
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈流液相層析連接電噴灑游離搭配串聯式質譜系統已是現今蛋白質體學主流的分析工具之一。在液相層析部分,逆相層析法與電噴灑質譜分析具有高度的相容性,且提供良好的解析力,使之成為了最常搭配質譜分析使用的分離策略。本篇實驗的研究目標,在於探討三種不同逆相液相層析管柱對於蛋白質水解產物胜肽的分離特性。三種管柱分別是填充粒子式的totally porous C18 column與HALO®2.7 Fused-core® C18 column,以及苯乙烯與乙二烯苯的共聚物製成之單層式SDVB column。選用的分析物分別來自牛血清白蛋白、胎球蛋白與酪蛋白經酵素水解之胜肽產物,藉由液相層析分離,電噴灑游離法離子化後進入質譜分析,由質譜的數據觀測各分析物在液相層析管柱分離下之特性。使用三種管柱搭配質譜儀分析一般胜肽樣品所鑑定到的胜肽數量無顯著差異,僅HALO Fused-core管柱之分離效率略優於其他管柱。鑑定胰蛋白酶水解之胎球蛋白中的醣基化胜肽時,使用聚合成之SDVB管柱擁有最佳的分離能力,以及鑑定到20種不同的醣基化胜肽;傳統的totally porous C18鑑定到19種醣基化胜肽,但無法有效分離具相同胜肽骨幹的醣基化胜肽。可惜的是此三種管柱對於高度親水性的樣品滯留能力不佳,皆無法順利分離氮-醣鏈醣類樣品。使用單層式SDVB管柱對於水解酪蛋白樣品中磷酸化胜肽鑑定效果最好,訊號強度約為其餘兩種管柱的二倍,亦具備有效分離不同數量磷酸化修飾位於同一段胜肽的能力。實驗結果導向此種聚合成單層式SDVB管柱對於親水性的後轉譯修飾的胜肽擁有最佳的分離效率。我們將更進一步的探討此種新型的聚合材質之特性與效能,它有潛力在蛋白質體學研究中成為另一種具有吸引力的毛細管柱之固定相材質。

    Nanoflow liquid chromatography coupled with electrospray tandem mass spectrometry is the major platform for proteomic analysis. Reverse phase chromatography also provides high resolving power and good compatibility with electrospray mass spectrometry. It becomes a widely applied online fractionation strategy for proteome research. In this study, the characteristics of three stationary phases used in reverse phase columns (totally porous C18, HALO®2.7 Fused-core® C18 and monolithic SDVB) were investigated for peptides, glycopeptides, phosphopeptides and glycans separation. Structures of totally porous C18 and HALO®2.7 Fused-core® C18 columns are bead-based and monolithic SDVB column are styrene -divinylbenzene copolymer. For regular peptide identification, performances of these three columns were insignificant. For glycopeptides, monolithic SDVB column gave the highest separation efficiency and a total of 20 N-linked glycopeptides were identified in tryptic fetuin. SDVB column is capable of separating the peptides with same backbone but different glycosylation motifs. Unfortunately, all three columns were unable to separate N-linked glycans form fetuin. In addition, SDVB column enhance more than 2-fold intensity for phosphopeptide detection. Besides, it can also separate phosphopeptides with various phosphorylation sites. The results demonstrated in this study show that SDVB column possesses great potential for hydrophilic peptide separation. The characterization and performance of this novel monolithic media will be further examined and it may be a promising addition to the stationary phase used in capillary column for proteome research.

    目錄 I 圖目錄 III 表目錄 V 縮寫 VI Abstract VII 中文摘要 VIII 第一章、序論 1 第一節、液相層析 1 第二節、質譜儀 5 第三節、蛋白質鑑定與資料庫比對分析 6 第一項、蛋白質磷酸化修飾與鑑定 7 第二項、蛋白質醣基化修飾與鑑定 8 第四節、血管收縮素轉換酶抑制性胜肽 9 第五節、實驗動機 10 第二章、實驗方法與材料 11 第一節、樣品製備 11 第一項、樣品材料 11 第二項、儀器設備 12 第三項、Tryptic BSA樣品製備 12 第四項、Tryptic Fetuin樣品製備 13 第五項、N-glycans of Fetuin樣品製備 13 第六項、Tryptic Avastin樣品製備 14 第七項、Tryptic α-Casein樣品製備 14 第八項、Tryptic β-Casein樣品製備 15 第二節、奈流液相層析連結電噴灑游離源串聯式質譜儀 15 第一項、 液相層析管柱製備 16 第二項、高效能液相層析儀與自動進樣系統參數設定 19 第三項、串聯式飛行時間質譜儀參數設定 19 第三節、資料庫分析比對-MASCOT 21 第四節、血管收縮素轉換酶抑制性胜肽鑑定方法 21 第三章、實驗結果與討論 23 第一節、 三種靜相層析管柱材質 23 第二節、三種管柱分離一般胜肽之質譜分析結果 24 第三節、三種管柱分離水解胎球蛋白中之醣基化胜肽質譜分析結果 24 第四節、三種管柱分離水解癌思停之醣基化胜肽質譜分析結果 25 第四節、三種管柱分離水解胎球蛋白中之醣鏈質譜分析結果 25 第五節、三種管柱分離磷酸化胜肽質譜分析結果 26 第六節、管柱在鹼性環境中分離效率探討 26 第七節、豆渣中血管收縮素轉換酶抑制性胜肽之質譜鑑定 27 第四章、結論與未來展望 28 參考文獻 29 附圖 34 附表 58

    1. Novakova, L.; Matysova, L.; Solich, P., Advantages of application of UPLC in pharmaceutical analysis. Talanta 2006, 68 (3), 908-18.
    2. Horvath, C. G.; Preiss, B. A.; Lipsky, S. R., Fast Liquid Chromatography: An Investigation of Operating Parameters and the Separation of Nucleotides on Pellicular Ion Exchangers ANALYTICAL CHEMISTRY 1967, 39, 1422-1428.
    3. Van Deemter, J. J.; Zuiderweg, F. J.; Klingengerg, A., . J. Chem. Eng 1956, Sci. 5 272.
    4. MacNair, J. E.; Lewis, K. C.; Jorgenson, J. W., Ultrahigh-pressure reversed-phase liquid chromatography in packed capillary columns. Anal Chem 1997, 69 (6), 983-9.
    5. MacNair, J. E.; Opiteck, G. J.; Jorgenson, J. W.; Moseley, M. A., 3rd, Rapid separation and characterization of protein and peptide mixtures using 1.5 microns diameter non-porous silica in packed capillary liquid chromatography/mass spectrometry. Rapid communications in mass spectrometry : RCM 1997, 11 (12), 1279-85.
    6. Acquity Ultra Performance LC. Waters Corporation, U.; AG-UL, E., 2004.
    7. Destefano, J. J.; Langlois, T. J.; Kirkland, J. J., Characteristics of superficially-porous silica particles for fast HPLC: some performance comparisons with sub-2-microm particles. Journal of chromatographic science 2008, 46 (3), 254-60.
    8. Advanced Materials Technology, I., HALO C18 Column.
    9. Abrahim, A.; Al-Sayah, M.; Skrdla, P.; Bereznitski, Y.; Chen, Y.; Wu, N., Practical comparison of 2.7 microm fused-core silica particles and porous sub-2 microm particles for fast separations in pharmaceutical process development. Journal of pharmaceutical and biomedical analysis 2010, 51 (1), 131-7.
    10. Ali, I.; Gaitonde, V. D.; Grahn, A., Halo Columns: New Generation Technology for High Speed Liquid Chromatography. Journal of chromatographic science 2010, 48, 386-394.
    11. Gritti, F.; Leonardis, I.; Abia, J.; Guiochon, G., Physical properties and structure of fine core-shell particles used as packing materials for chromatography Relationships between particle characteristics and column performance. Journal of chromatography. A 2010, 1217 (24), 3819-43.
    12. Svec, F.; Lv, Y., Advances and recent trends in the field of monolithic columns for chromatography. Anal Chem 2015, 87 (1), 250-73.
    13. Ivanov, A. R.; Zang, L.; Karger, B. L., Low-Attomole Electrospray Ionization MS and MS/MS Analysis of Protein Tryptic Digests Using 20-ím-i.d. Polystyrene-Divinylbenzene Monolithic Capillary Columns. Anal. Chem. 2003, 75, 5306-5316.
    14. Huck, C. W.; K., B. G., Poly(Styrene-Divinylbenzene) Based Media for Liquid Chromatography. Chem. Eng. Technol. 2005, 28 (1457-1472).
    15. Lin, Z.; Pang, J.; Yang, H.; Cai, Z.; Zhang, L.; Chen, G., One-pot synthesis of an organic-inorganic hybrid affinity monolithic column for specific capture of glycoproteins. Chemical communications 2011, 47 (34), 9675-7.
    16. Zhang, Z.; Lin, H.; Ou, J.; Qin, H.; Wu, R.; Dong, J.; Zou, H., Preparation of phenyl-silica hybrid monolithic column with "one-pot" process for capillary liquid chromatography. Journal of chromatography. A 2012, 1228, 263-9.
    17. Urban, J.; Jandera, P., Polymethacrylate monolithic columns for capillary liquid chromatography. Journal of separation science 2008, 31 (14), 2521-40.
    18. Deng, N.; Liang, Z.; Liang, Y.; Sui, Z.; Zhang, L.; Wu, Q.; Yang, K.; Zhang, L.; Zhang, Y., Aptamer modified organic-inorganic hybrid silica monolithic capillary columns for highly selective recognition of thrombin. Anal Chem 2012, 84 (23), 10186-90.
    19. Krenkova, J.; Lacher, N. A.; Svec, F., Control of selectivity via nanochemistry: monolithic capillary column containing hydroxyapatite nanoparticles for separation of proteins and enrichment of phosphopeptides. Anal Chem 2010, 82 (19), 8335-41.
    20. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926), 64-71.
    21. Ikonomou, M. G.; Blades, A. T.; Kebarle, P., Electrospray-Ion Spray: A Comparison of Mechanisms and Performance Anal Chem 1991, 63, 1989-1998.
    22. Dooley, K. C., Tandem mass spectrometry in the clinical chemistry laboratory. Clinical Biochemistry 2003, 36 (6), 471-481.
    23. Edman, P., A method for the determination of amino acid sequence in peptides. Arch Biochem. 1949, 3, 475.
    24. Edman, P.; Begg, G., A Protein Sequenator. European J. Biochem 1967, 1, 80-91.
    25. Henzel, W. J., Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci USA 1993, 90, 5011-5015.
    26. Graves, J. D.; Krebs, E. G., Protein phosphorylation and signal transduction. Pharmacology & therapeutics 1999, 82 (2-3), 111-21.
    27. Harsha, H. C.; Pandey, A., Phosphoproteomics in cancer. Molecular oncology 2010, 4 (6), 482-95.
    28. Schwarz, E.; Bahn, S., Cerebrospinal fluid: identification of diagnostic markers for schizophrenia. Expert review of molecular diagnostics 2008, 8 (2), 209-16.
    29. Telu, K. H.; Abbaoui, B.; Thomas-Ahner, J. M.; Zynger, D. L.; Clinton, S. K.; Freitas, M. A.; Mortazavi, A., Alterations of histone H1 phosphorylation during bladder carcinogenesis. Journal of proteome research 2013, 12 (7), 3317-26.
    30. Masuda, H.; Shichijo, S.; Takeuchi, M., Glycopeptide and glycosaminoglycans in the process of hepatic cancer induced by 3'-methyl-DAB. The International journal of biochemistry 1978, 9 (11), 829-32.
    31. Uhr, M.; Ebinger, M.; Rosenhagen, M. C.; Grauer, M. T., The anti-Parkinson drug budipine is exported actively out of the brain by P-glycoprotein in mice. Neuroscience letters 2005, 383 (1-2), 73-6.
    32. Ueda, E.; Kokubu, T.; Akutsu, H.; Yamamura, Y., Inhibition of angiotensin I converting enzyme and kininase in rabbit plasma by bradykinin potentiating peptide B (Pyr-Gly-Leu-Pro-Arg-Pro-Lys-Ile-Pro-Pro). Experientia 1971, 27 (9), 1020-1.
    33. Harris, R. B., Isolation and sequencing of an active-site peptide from angiotensin I-converting enzyme. Advances in experimental medicine and biology 1986, 198 Pt A, 513-21.
    34. Kusukawa, R.; Kinoshita, M., [Symposium on pathophysiology of congestive heart failure. 1. Relationship of renin-angiotensin-aldosterone system to cardio-renal hemodynamics on chronic congestive heart failure (author's transl)]. Nihon Naika Gakkai zasshi. The Journal of the Japanese Society of Internal Medicine 1973, 62 (12), 1609-14.

    無法下載圖示 本全文未授權公開
    QR CODE