研究生: |
潘孝桂 |
---|---|
論文名稱: |
短跑選手與非運動員之聽覺反應時間及事件關連電位比較 The comparison of auditory reaction time and event related potentials between sprinters and nonathletes |
指導教授: | 陳錦龍 |
學位類別: |
碩士 Master |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | N100 、N200 、P300 、反應時間(reaction time) 、事件關連電位( |
英文關鍵詞: | N100, N200, P300, reaction time, event-related potential, ERP) |
論文種類: | 學術論文 |
相關次數: | 點閱:236 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的是比較短跑選手與非運動員的聽覺反應時間,反應時間的參數包括中樞訊息處理速度(前動作時間, PMT)和周邊執行速度(動作時間, MOT),以及事件關連電位N100、N200及P300延遲時間(latency)。以24位大學男生(12名短跑選手,12名非運動員),年齡從20歲到24歲,為實驗參加者。刺激頻率聲音是由STIM系統產生分別為500Hz、1000Hz、1500Hz及2000Hz。這些刺激則採隨機出現,目標刺激為2000Hz,當目標刺激出現時,實驗參加者需立刻按鈕反應。並運用EMG和EEG所蒐集到資料,來計算出反應時間、前動作時間、動作時間及N100、N200和P300延遲時間。這些資料指出短跑選手聽覺反應時間快於非運動員,是由於短跑選手有較快中樞訊息處理速度所致。周邊執行時間兩者則無差異。除此之外,在事件關連電位方面短跑選手的N100、N200延遲時間與非運動員無顯著差異。但P300延遲時間短跑選手則是快於非運動員。
關鍵詞:
The purpose of the study was to compare the auditory reaction time (RT) between sprinters and nonathletes. The parameters of RT included the central information processing speed (premotor time, PMT) and the peripheral executing speed (motor time, MOT). Also, the latencies of event related potentials (ERP) including N100,N200 and P300, were compared. Twenty-four male college students, from 20 to 24 years old, with half of them being sprinters and the other half being nonathletes, served as subjects. The stimuli were the sounds of 500Hz, 1000Hz, 1500Hz and 2000Hz frequencies that were produced by STIM system. Those sounds appeared randomly. The target stimulus was 2000Hz and when it appeared the subject should depress the button. The EMG and EEG were employed to collect (or calcuate) RT, PMT, MOT, N100, N200 and P300. The data indicate that the auditory reaction time (RT) for sprinters is faster than that of nonathletes and it is due to the faster center information process speed (PMT) for sprinters. The peripheral executing speed (MOT) is no different between the two groups. In addition, the latencies of N100, N200 and are not different between sprinters and nonathletes. But, the latency of P300 for sprinters is faster than that of nonathletes.
key words:
中文部分:
楊漢琛 (民 81)。聲、光不同刺激方式對全身反應時間與手
部反應時間之影響研究。輔大學誌,21,頁139-198。
林清山 (民 81 )。心理與教育統計學。台北市:東華書局。
鄭昭明 (民82)。認知心理學—理論與實踐。台北:桂冠出版公
司。
邵 郊(民 82)。生理心理學。台北:五南出版社。
豐東洋、黃廖植、楊世達(民 84)。事件關連腦電位(ERP)
在訊息處理研究之應用。體育學報,第20輯,頁51-62。
張春興 (民 84)。張氏心理學辭典。台北市:東華書局。
林清和 (民85)。運動學習程式學。台北:文史哲出版社。
任卓偉、陳錦龍 (民 86)。狀態性焦慮對中樞訊息處理及周邊執行
速度的影響。台灣師大體育,第3期,頁41-56.
洪聰敏。(民 87)。腦波:探討運動及身體活動的另一扇視窗。
中華體育,第11卷,第4期,頁63-74。
英文部分:
Andreassi, J. L. (1995). Human behavior & physiological
Response (3rd ed.):Lawrence Erlbaum Associates.
Bhanot, J. L., & Sidhu, L. S. (1979). Reaction time of indian hockey
players with reference to three levels of participation. Journal
of Sports Medicine, 19, 199-204.
Bhanot, J. L., & Sidhu, L. S. (1980). Comparative study of reaction
time in Indian sportsmen specializing in hockey, volleyball,
weightlifting and gymnastics. Journal of Sport Medicine, 20,
113-118.
Coyle, S., Gordon, E., Howson, A., & Meares, R. (1991). The effects
of age an auditory event-related potentials. Aging Reserch,
17(2), 103-11.
Dickie, D. A., & Kerr, R. (1987). Percepter and motor practice and
choice reaction time. International Journal of Sport Psychology,
18(1), 40-50.
Duncan, J. (1977). Response selection rules in spatial choice tasks. In
S. Dornic (Ed). Attention and performance (pp.49-61).
Hillsdale, NJ: Erlbaum.
Dujardin, K., Derambure, P., Bourrize, J. L., Jacquesson, J. M., &
Guieu, J. D. (1993). P300 component of the event-related
Potentials(ERP) during an attention task:effect of age stimulus
modality and event probability. International Journal of
Psychophysiology, 14, 255-67.
Fitzgerald, P. G., & Picton, T. W. (1983). Event-related potentials
recorded during discrimination of improbable stimulus.
Biological Psychology, 17, 241-276.
Fowler, B., & Lindeis, A. (1992). The effect of hypoxia on auditory
reaction time and P300 latency. Aviation Space and
Enviromental Medicine, 63, 976-981
George, G. (1989). Simple reaction time to auditory stimulus: Some
variables of influence. Physical Education Review, 12, 70-77.
Hansen, J. C., & Hilltard, S. A. (1983). Selective attention to
multidimensional auditory stimuli in man. Journal of
Expermental Psychology: Human Perception and Performance,
9, 1-19.
Henry, F. M., & Roger, D. E. (1960). Increased response latency for
complicated movements and a memory drum theory of
neuromotor reaction. Research Quarterly, 31, 448-458.
Hick, W. E. (1952). On the rate of gain of information. Quarterly
Journal of Experimental Psychology, 4, 11-26.
Hillyard, S. A., & Hanse, J. C. (1986). Attention Electrophysiological
approaches. In M. G. H. Coles, E. Donchin, & S. W. Porges(Eds.).
Pschyopysiology: Systems processes and applications (pp.227-
243). New York: Guilford.
Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973).
Electrical signs of selective attention in the human brain.
Science, 182, 177-180.
Jonh, T. C., & Louis, C. T. (1990). Principles of psychophysiology.
New York: Cambridge University Press.
Kutas, M., & Donchin, E. (1980). Preparation to respond as
manifested by movement-related brainpotentials. Brain
Research, 202, 95-115.
Mokha, R., Kaur, G., & Sidhu, L. S. (1992). Effect of training on the
reaction time of Indian female hockey players.The Journal of
Sport Medicine and Physical Fitness, 32, 429-451.
Magill, R. A. (1993). Motor learning: Concepts and application
(4TH ed). Dubuque, IA: WCB McGraw-Hill.
Naatanen, R. (1982). Processing negativity: Anevoked potential
reflection of selective attention. Psychological Bulletin, 92,
605-640.
Norri, M. L. (1967). Practice effects on reaction latency for simple
and complex movement. Research Quarterly, 38, 79-85.
Prasher, D., & Findley, L. (1991). Dopaminergic induce change in
cognitive and motor processing in Parkinson disease an
electrophysical and sematic discrimination task,
Psychophysiology, 20, 168-179.
Randino, F., Garavalia, P., Beretta, S., & Pellegrini, G. (1997).
Auditory event-related potentials in Parkinson’s disease.
Electromyogr Clinic Neurophysiol, 37, 409-13.
Rossi, B., & Zani, A. (1991). Timing of movement-related decision
processes in clay-pigeon shooters as assessed by event-related
brain potential and reaction times. International Journal of
Sport Psychology , 22, 128-139.
Rodin, E., Chayasirisobhon, S., & Klutke, G. (1982). Brainstem
auditory evoked potential recording in patients with epilepsy.
Clinic Electroencephalogr, 13, 154-161.
Ruchkin, D. S., Sutton, S., Kietzman, M., & Silver, K. (1980). Slow
wave and p300 in signal detection. Electroencephalography and
Clinical Neurophysiology, 50, 35-47.
Rugg, M. D., Milner, A. D., Lincs, C. R., & Phalp, R. (1987).
Modulation of visual event-related potentials by spatial and
non-spatial visual attention. Neuropsychology, 25, 85-96.
Sharma, V., Khan, H. A., & Butchiramaiah, C. (1986). A comparative
study of reaction time and cocentration among recreational and
competitive volleyball player . Journal of Sport Medicine,36,
40-46.
Singer, R. N. (1968). Motor learning and human performance. New
York:Macmillan.
Spirduso, W. W. (1975). Reaction and movement time as a function of
age and physical activity level. Journal of Gerontology, 30(4),
435-440.
Soliman, S., Mostafa, M., Kamal, N., Raafat, M., & Hazzaa, N. (1993).
Auditory evoked potentials in epileptic patients. Ear Hear, 14,
35-41.
Takeuchi, T. (1993). Auditory information in playing tnnis.
Perceptual and Motor Skills, 76, 1323-1328.
Tastuo, F., Oasmi, O., Yukihiko, F., Masahiko, O., Yukio, N.,
Thoru, Y. (1993). Auditory event-related potentials and
reaction time in children: evaluation of cognitive
development. Development Medicine and Child Neurology,
35, 230-237.
Weiss, R. M. (1965). The locus of reaction time change with set, and age.
Journal of Gerontology, 20, 60-64.