簡易檢索 / 詳目顯示

研究生: 游雅雯
Yo, Ya-Wen
論文名稱: 獵戶座 KL 熱分子雲核中蟻酸分子之順反異構物研究
A Study of the Conformers of Formic Acid in the Orion KL Hot Molecular Core
指導教授: 管一政
Kuan, Yi-Jehng
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 71
中文關鍵詞: 星際介質熱分子雲核獵戶座KL天文化學星際立體異構學
英文關鍵詞: interstellar medium, hot molecular core, Orion KL, astrochemistry, interstellar stereoisomerism
DOI URL: http://doi.org/10.6345/NTNU202000422
論文種類: 學術論文
相關次數: 點閱:191下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蟻酸,最簡單的有機酸,具有兩種構形異構物:反式和 順式-HCOOH。星際反式構形異構之 HCOOH 是太空中構形 異構-I 的氨基乙酸之可能前體分子,順式 HCOOH 則是構形 異構-II 的氨基乙酸之可能先驅物。反式 HCOOH 在獵戶座 KL 熱分子核心中檢測到,但至今尚未測到順式 HCOOH。 獵戶座 KL 是個含有許不同有機分子及豐富的化學之高質量 恆星形成區,而氨基乙酸則是最簡單的氨基酸。因此,我們 使用阿塔卡瑪大型毫米及次毫米波陣列(ALMA)進行觀測 獵戶座 KL,以搜索順式 HCOOH。

    透過角秒分辨率和高靈敏度的 ALMA 觀測,我們分別在 ALMA 第 6 頻段的 255 GHz 和 ALMA 第 7 頻段的 324 GHz 獲得了至今最佳的獵戶座 KL 連續譜影像。此外我們成功地在獵戶座 KL 的五個區域中明確地偵測出六個順式 HCOOH 的分子躍遷譜線。經由旋轉躍遷圖的分析,我們也得出了順式和反式-HCOOH 的旋轉激發溫度和柱密度,也獲得了在 Compact Ridge 中順式對反式-HCOOH 的相對豐度比值,而所獲豐度比支持塵粒化學對順式-HCOOH 形成路徑在冰粒表面上的預測,而非紫外光轉換。我們在獵戶座 KL 中偵測到 順式 HCOOH 不僅有助於擴展我們對星際立體異構研究的理 解,而且對天文生物學研究也至關重要。

    Formic acid, the simplest organic acid, has two conformational isomers: trans- and cis-HCOOH. Interstellar trans-conformer of HCOOH is the likely precursor of conformer I glycine in space, and the cis-HCOOH, of conformer II glycine. trans-HCOOH was detected in the Orion KL hot molecular core whereas cis-HCOOH has not been detected. Orion KL is a massive star-forming region containing numerous organic molecular species with rich chemistry, and glycine is the simplest amino acid. Hence, we observed Orion KL using the Atacama Large Millimeter/submillimeter Array (ALMA) to search for cis-HCOOH.

    With arcsecond-resolution and high-sensitivity of ALMA observations, we obtain the best continuum images of Orion KL to date in ALMA Bands 6 & 7 at 255 GHz and 324 GHz, respectively. In addition, we successfully detected six transitions of cis- HCOOH unambiguously in five regions toward Orion KL. From rotation-diagram analysis, excitation temperatures and column densities of cis- and trans-HCOOH are derived. The abundance ratio of cis- to trans-HCOOH in the Compact Ridge is attained which supports the grain-chemistry prediction of the formation route of cis-HCOOH on icy-grain surface instead of photoswitching. Our detection of cis-HCOOH in Orion KL not only extends our comprehension of interstellar stereoisomerism but is also vital for astrobiology study.

    1 Introduction 1 1.1 Interstellar Stereoisomerism of Formic Acid 1 1.2 The Orion KL Hot Molecular Core 3 2 ALMA Observations of Orion KL 5 2.1 ALMA Observations in Band 6 6 2.2 ALMA Observations in Band 7 7 2.3 Continuum and Spectral Imaging 13 3 ALMA Results: Detection of the cis-Conformer of Formic Acid in Orion KL 15 3.1 Orion KL Continuum in (Sub)millimeter Bands 15 3.2 Major Continuum Sources in Orion KL 24 3.2.1 The Hot Core 24 3.2.2 The Compact Ridge 27 3.3 Spatial Distribution of Formic Acid in Orion KL 29 3.3.1 Spectral Imaging – trans-HCOOH 30 3.3.2 Spectral Imaging – cis-HCOOH 36 3.3.3 The Spectra of trans- and cis-HCOOH 39 4 Analysis and Discussion 51 4.1 Rotational Temperature and Column Density 51 4.1.1 Region A 54 4.1.2 Region B 55 4.1.3 Region C 55 4.1.4 Region D 56 4.1.5 Region E 57 4.2 Formic acid conformers ratio in Orion KL 58 5 Summary 64 Bibliography 67

    Agúndez, M., Marcelino, N., Cernicharo, J., Roueff, E., & Tafalla, M. 2019, A&A, 625, A147
    Bally, J., Ginsburg, A., Arce, H., et al. 2017, ApJ, 837, 60
    Bell, T. A., Cernicharo, J., Viti, S., et al. 2014, A&A, 564, A114
    Beuther, H., & Nissen, H. D. 2008, ApJL, 679, L121
    Blake, G. A., Mundy, L. G., Carlstrom, J. E., et al. 1996, ApJL, 472, L49
    Blake, G. A., Sutton, E. C., Masson, C. R., & Phillips, T. G. 1987, ApJ, 315, 621
    Caselli, P., Hasegawa, T. I., & Herbst, E. 1993, ApJ, 408, 548
    Cernicharo, J., Marcelino, N., Roueff, E., et al. 2012, ApJL, 759, L43
    Charnley, S. B., Ehrenfreund, P., & Kuan, Y. J. 2001, Spectrochimica Acta Part A: Molecular Spectroscopy, 57, 685
    Charnley, S. B., Tielens, A. G. G. M., & Millar, T. J. 1992, ApJL, 399, L71
    Cuadrado, S., Goicoechea, J. R., Roncero, O., et al. 2016, A&A, 596, L1
    Downes, D., Genzel, R., Becklin, E. E., & Wynn-Williams, C. G. 1981, ApJ, 244, 869
    Drozdovskaya, M. N., Walsh, C., Visser, R., Harsono, D., & van Dishoeck, E. F. 2015, MNRAS, 451, 3836
    Favre, C., Pagani, L., Goldsmith, P. F., et al. 2017, A&A, 604, L2
    Favre, C., Fedele, D., Semenov, D., et al. 2018, ApJL, 862, L2
    Gaume, R. A., Wilson, T. L., Vrba, F. J., Johnston, K. J., & Schmid-Burgk, J. 1998, ApJ, 493, 940
    Genzel, R., Reid, M. J., Moran, J. M., & Downes, D. 1981, ApJ, 244, 884
    Gong, Y., Henkel, C., Thorwirth, S., et al. 2015, A&A, 581, A48
    Goumans, T. P. M., Uppal, M. A., & Brown, W. A. 2008, MNRAS, 384, 1158
    Greenhill, L. J., Gwinn, C. R., Schwartz, C., Moran, J. M., & Diamond, P. J. 1998, Nature, 396, 650
    Hirota, T., Kim, M. K., Kurono, Y., & Honma, M. 2015, ApJ, 801, 82
    Hocking, W. H. 1976, Zeitschrift Naturforschung Teil A, 31, 1113
    Högbom, J. A. 1974, A&AS, 15, 417
    Ioppolo, S., Cuppen, H. M., van Dishoeck, E. F., & Linnartz, H. 2011, MNRAS, 410, 1089
    Isokoski, K., Bottinelli, S., & van Dishoeck, E. F. 2013, A&A, 554, A100
    Kleinmann, D. E., & Low, F. J. 1967, ApJL, 149, L1
    Kuan, Y.-J., Charnley, S. B., Huang, H.-C., Tseng, W.-L., & Kisiel, Z. 2003, ApJ, 593, 848
    Kurtz, S., Cesaroni, R., Churchwell, E., Hofner, P., & Walmsley, C. M. 2000, in Protostars and Planets IV, ed. V. Mannings, A. P. Boss, & S. S. Russell, 299–326
    Liu, S.-Y., Girart, J. M., Remijan, A., & Snyder, L. E. 2002, ApJ, 576, 255
    Masson, C. R., Claussen, M. J., Lo, K. Y., et al. 1985, ApJL, 295, L47
    McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, Astronomical Society of the Pacific Conference Series, Vol. 376, CASA Architecture and Applications, ed. R. A. Shaw, F. Hill, & D. J. Bell, 127
    Menten, K. M., & Reid, M. J. 1995, ApJL, 445, L157
    Menten, K. M., Reid, M. J., Forbrich, J., & Brunthaler, A. 2007, A&A, 474, 515
    Müller, H. S. P., Thorwirth, S., Roth, D. A., & Winnewisser, G. 2001, A&A, 370, L49
    Nissen, H. D., Gustafsson, M., Lemaire, J. L., et al. 2007, A&A, 466, 949
    Öberg, K. I., Bottinelli, S., Jørgensen, J. K., & van Dishoeck, E. F. 2010, ApJ, 716, 825
    Orozco-Aguilera, M. T., Zapata, L. A., Hirota, T., Qin, S.-L., & Masqué, J. M. 2017, ApJ, 847, 66
    Pagani, L., Favre, C., Goldsmith, P. F., et al. 2017, A&A, 604, A32
    Peng, Y., Qin, S.-L., Schilke, P., et al. 2017, ApJ, 837, 49
    Pickett, H. M., Poynter, R. L., Cohen, E. A., et al. 1998, JQSRT, 60, 883
    Plambeck, R. L., & Wright, M. C. H. 2016, ApJ, 833, 219
    Plambeck, R. L., Bolatto, A. D., Carpenter, J. M., et al. 2013, ApJ, 765, 40
    Remijan, A., Shiao, Y. S., Friedel, D. N., Meier, D. S., & Snyder, L. E. 2004, ApJ, 617, 384
    Remijan, A. J., Markwick-Kemper, A., & ALMA Working Group on Spectral Line Frequencies. 2007, in American Astronomical Society Meeting Abstracts, Vol. 211, American Astronomical Society Meeting Abstracts, 132.11
    Rodgers, S. D., & Charnley, S. B. 2001, ApJ, 546, 324
    Sutton, E. C., Peng, R., Danchi, W. C., et al. 1995, ApJS, 97, 455
    Taquet, V., Wirström, E. S., Charnley, S. B., et al. 2017, A&A, 607, A20
    Tercero, B., Cuadrado, S., López, A., et al. 2018, A&A, 620, L6
    Turner, B. E. 1991, ApJS, 76, 617
    Wang, K.-S., Kuan, Y.-J., Liu, S.-Y., & Charnley, S. B. 2010, ApJ, 713, 1192
    Winnewisser, M., Winnewisser, B. P., Stein, M., et al. 2002, Journal of Molecular Spectroscopy, 216, 259
    Wright, M. C. H., Plambeck, R. L., & Wilner, D. J. 1996, ApJ, 469, 216
    Wynn-Williams, C. G., Genzel, R., Becklin, E. E., & Downes, D. 1984, ApJ, 281, 172
    Zapata, L. A., Schmid-Burgk, J., & Menten, K. M. 2011, A&A, 529, A24
    Zapata, L. A., Schmid-Burgk, J., Rodríguez, L. F., Palau, A., & Loinard, L. 2017, ApJ, 836, 133
    Zuckerman, B., Ball, J. A., & Gottlieb, C. A. 1971, ApJL, 163, L41

    無法下載圖示 本全文未授權公開
    QR CODE