簡易檢索 / 詳目顯示

研究生: 林榮君
Rung-Jiun Lin
論文名稱: 鉑的重構-皺化與失蹤原子列的觀察與研究
Reconstruction of platinum-study of faceting and missing-row
指導教授: 傅祖怡
Fu, Tsu-Yi
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 90
中文關鍵詞: 場離子顯微鏡鉑 (白金)皺化重構失蹤原子列表面自由能
英文關鍵詞: Field ion microscopy (FIM), platinum (Pt), faceting, reconstruction, missing-row, surface-energy
論文種類: 學術論文
相關次數: 點閱:327下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,我們利用場離子顯微鏡觀察鉑的皺化與失蹤原子列的表面重構。表面的皺化與失蹤原子列的產生,都是為了得到最低的表面自由能而去改變表面的形貌。因此本文就以這兩個方向加以深入討論。皺化方面,當加熱退火的溫度逐漸提升,包括了(111)、(100)、(311)、(110)等表面自由能較低的指數面會漸漸擴張,此外在加熱至700K以上,(310)面也發生了擴張的行為,是本實驗中最令人振奮的發現,這也說明了就算擁有較低表面自由能的指數面,若給予的能量未達該指數面原子該有的動態能量,依然不會有皺化行為的發生。失蹤原子列方面,失蹤原子列的表面形貌在(110)面及(311)面是(1×1)變成(1×2)的結構,而在(331)面及(211)面而言都是(1×1)變成表面兩層(1×2)的結構,這種結構可以是原子的增加、消失,亦或是原子跳動,在此我們將這種行為與皺化的表現做結合,發現兩者是相輔相成、同時存在的,並且發現在表面重構發生後,各指數面交界仍然保持連續。另外(311)面則在加熱到650K之後,會再由(1×2)的結構,再次轉為(2×2)的重構。另外本實驗對合金Pt80Ir20以場離子顯微鏡做形貌上的觀察,發現合金擁有較強的鍵結,並且在(100)面已經可以看到超晶格的結構。

    Faceting and missing-row of Pt surface reconstruction are observed by field ion microscopy (FIM). In order to reducing the surface energy, it may facet and forms the missing-row on the surface. In the point of view for faceting, while anneal temperature increases, those low-surface-free-energy surfaces including (111)、(100)、(110)、(311) extend. As the temperature is arising to 700K, the (310) surface starts to extend. This implies that even though the surface free energy is low enough, the surface still cannot facet if the applied energy is lower than the dynamic energy of surface atoms. In the point of view for missing-row, surface structures reconstruct from (1×1) to missing-row (1×2) on (110), (311), (331) and (211) surfaces. (331) and (211) surfaces have two mono-layer (1×2) reconstructions. This structure can be attributed to adding-atom, missing-atom, or atom-jumping. This behavior corresponds to faceting simultaneously. The surface borders of different index keep connected after surface reconstruction. Besides, (113) surface reconstructs again from (1×2) to (2×2) at 650K.
    In addition, Pt80Ir20 alloy are also observed in this study. The observation shows that the bond in this alloy is strong, and there are superlattice structures on (100) facets.

    目    錄 中文摘要 英文摘要 第一章 緒論..........................1 1-1簡介............................1 1-2研究動機..........................3 1-3研究要點..........................5 第二章 實驗原理 .......................6 2-1成像原理 .........................6 2-2場離子化機制 .......................9 2-3場蒸發與場退吸附原理 ...................13 2-4場離子影像說明 ......................15 第三章 實驗儀器 ......................17 3-1 FIM系統.........................18 A、真空幫浦.........................18 B、高壓電源.........................18 C、樣品座..........................19 D、低溫冷卻裝置.......................19 E、成像系統.........................20 3-2其他裝置 .........................23 A、實驗輔助裝置.......................23 B、殘餘氣體分析儀......................24 第四章 實驗步驟 ......................25 4-1實驗流程 .........................25 4-2樣品製備 .........................26 A、線材樣品的準備......................26 B、ㄇ架的準備與清潔.....................27 C、針尖蝕刻.........................28 4-3超高真空環境 .......................30 A、真空壓力.........................30 B、真空中的樣品清潔.....................30 4-4實驗記錄 .........................31 A、鉑的皺化.........................31 B、合金的觀察........................31 第五章 實驗分析與討論.....................32 5-1鉑的皺化..........................33 A、溫度T =550K~600K ....................34 B、溫度T =600K~650K ....................35 C、溫度T =650K~700K ....................36 D、溫度T>700K .......................37 E、溫度T>750K 多面體的形成 ................40 F、皺化與溫度 ........................45 5-2失蹤原子列.........................46 A、(1×1)重構為(1×2)-(110)面及(311)面 ...........47 B、(1×1)重構為(1×2)2MR-(331)面及(211)面 .........50 C、(1×1)重構為(1×3)-(511)面 .......... .....58 5-3綜合討論..........................60 A、皺化行為與失蹤原子列的關聯性 ...............60 B、失蹤原子列的形成機制 ...................64 C、重構的全面性 .......................69 D、(311)面的二次重構 ....................74 E、銥的重構 .........................77 F、鉑與銥 ..........................81 5-4鉑依合金..........................82 A、場蒸發中的現象 ......................84 B、單層有序 .........................86 第六章 結論 .........................88 6-1鉑的重構..........................88 6-2鉑銥合金..........................88

    [1] V. T. Binh and N. Garcia: Ultramicroscopy 42– 44, 80. (1992)
    [2] N. de Jonge, M. Allioux, M. Doytcheva, M. Kaiser, K. B. K. Teo, R. G. Lacerda, W.I. Milne, Appl. Phys. Lett, 85. 1607. ( 2004)
    [3] K. J. Song, C. Z. Dong, T. E. Madey, Langmuir, 7. 3019. (1991)
    [4] T. Y. Fu, L. C. Cheng, C. H. Nien and T. T. Tsong, Phys. Rev. B, 64. 113401. (2001)
    [5] H.S. Kuo, I. S. Hwang, T. Y. Fu, J. Y. Wu, C. C. Chang, T. T. Tsong, Nano Letters, 4, 2379. (2004)
    [6] 以FIM是研究針尖原子結構是最佳的方法。有關FIM的基本原理、儀器架構、成像技術與影像解讀,可參考T. T. Tsong, “Atom-Probe Field Ion Microscopy”, Cambridge (1990)
    [7] N. Garcia, H. Rohrer, J. Phys.: Condens. Matter, 1. 3737. (1989)
    [8] 鄭隆傑,國立台灣師範大學碩士論文 (2002)
    [9] 吳俊毅,國立台灣師範大學碩士論文 (2003)
    [10] 林鈺君,國立台灣師範大學碩士論文 (2005)
    [11] 黃穎祥,國立台灣師範大學碩士論文 (2007)
    [12] E. W. Müller, Z. Physik, 106. 541. (1937)
    [13] E. W. Müller, Z. Physik, 131. 136. (1951)
    [14] G. L. Kellogg, Phys. Rev. B. 48. 11305. (1991)
    [15] 王雅慧,國立台灣師範大學碩士論文 (2003)
    [16] N Seriani and F Mittendorfer J. Phys.: Condens. Matter 20. 184023. (2008)
    [17] M. Sander, R. Imbihl, R. Schuster, J.V. Barth and G. Ertl Surf. Sci, 271. 159. (1992)
    [18] M. Forte & J. M. Parazian, Metal.Cai, J, 1. 82. (1973)
    [19] G. L. Kellogg, Phys. Rev. Lett.55. 2126. (1985)
    [20] A. Gaussmann, N. Kruse, Surf. Sci. 266. 46. (1992)
    [21] A. Gaussmann, N. Kruse, Surf. Sci. 279. 319. (1992)
    [22] T. T. Tsong, “Atom-Probe Field Ion Microscopy”, Cambridge (1990)
    [23] Ali Al-Akl , Gary Attard , Robert Price and Beverley Timothy, Phys. Chem. Chem. Phys. 3. 3261. (2001)
    [24] S. J. Jenkins, M.A.Peterson, D.A.King, Surf. Sci. 494. 159. (2001)
    [25] R. J. Needs, M. J. Godfrey and M. Mansfield, Surf. Sci, 242. 215. (1991)
    [26] Q. J. Gao, T.T. Tsong, J. Vac. Sci, 5. 761. (1987)
    [27] Q. J. Gao, T.T. Tsong, Phys. Rev. B, 35. 7764. (1987)
    [28] K. Müller, J. Witt, and O. Schütz, Journal of Vacuum Science & Technology A, 5. 747. (1987)
    [29] G. L. Kellogg , Sandia National Laboratories, Albuquerque, New Mexico, 87185. (1986)
    [30] J. Wesemann, G. Frommyer, M. Kreuss, Appl. Surf. Sci, 87/88. 179. (1995)
    [31] V.A. Ivchenko, M.A. Uimin, A.Ye. Yermakov, A.Yu. Korobeinikov, Surf. Sci, 440. 428. (1999)
    [32] Toshiki Kingetsu, Masahihiko Yamamoto, Soji Nenno, Japanese Journal of Applied Physics, 21. 1421. (1982)
    [33] Toshiki Kingetsu, Masahihiko Yamamoto, Soji Nenno, Japanese Journal of Applied Physics, 20. 2037. (1981)
    [34] Toshiki Kingetsu, Masahihiko Yamamoto, Soji Nenno, Osami Nishikawa, Appl. Surf. Sci, 94/95. 295. (1996)
    [35] Toshiki Kingetsu, Masahihiko Yamamoto, Appl. Surf. Sci, 87/88. 291. (1995)
    [36] Georg Frommeyer, Zhi-Guo Liu, Jurgen Wesemann, Nelja Wanderka, Utramicroscopy, 92. 57. (2002)
    [37] S.S. Babu, K. Hono, T. Sakuai, Appl. Surf. Sci, 67. 361. (1993)
    [38] Chanrles Kittel, Introduction Solid Stare Physics.
    [39]H. T. Diep, A. Ghazali, B. Berge, P. Lallemand, Europhys, Lett, 2(8), 603. (1986)
    [40] Yuguang Ma, Perla B. Balbuena, Surf. Sci, 602. 107. (2008)

    QR CODE