研究生: |
張曜昌 |
---|---|
論文名稱: |
Nitronates 的轉變 |
指導教授: |
姚清發
Yao, Ching-Fa |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 211 |
中文關鍵詞: | 硝基烷 |
英文關鍵詞: | nitroalkanes |
論文種類: | 學術論文 |
相關次數: | 點閱:105 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一部分
在四氫喃的溶液中,反式的β-硝基苯乙烯 1a可以和dimethyl malonate的陰離子 2a 反應產生nitronate 3a。溶液中若存在DMAP,或者以啶 (pyridine) 為溶劑的情況下, 3a 可與三氯化磷作用而生成硝基烷 (nitroalkane) 4a、氯化 (chlorooxime) 5a和類 (nitrile) 6a。反應步驟首先在四氫喃溶液中進行加成反應產生 3a,然後 3a 可以在室溫下於四氫喃和啶的混和溶液中轉換成最終產物;同理,所有反應也可以在四氫喃溶液中進行,加完DMAP後再加熱至迴流,也有類似的結果。
同理,在四氫喃溶液中,反式的β-硝基苯乙烯 1a 可以先和dimethyl allylmalonate的陰離子 2b 反應,然後在不同的條件下加入三氯化磷,最後可以產生硝基烷 7a、雙環化合物 8a和類 9a。同樣的,若 1a 和dimethyl 3-cyclohexenylmalonate 2c 的陰離子反應,再和三氯化磷作用,也可以產生三環化合物 11a 和類 12a 。
根據以上的實驗結果我們歸納出下列結果:nitronates會在三氯化磷的作用下轉變成硝基烷 (nitroalkanes) 、氯化 (chlorooximes) 和類 (nitriles);當反應系統存在dipolarphiles,則nitronates可以轉變成硝基烷、類和多環化合物。
第二部分
在00C的條件下,以四氫喃當溶劑,反式的β-硝基苯乙烯 1a可以和dimethyl allylmalonate的陰離子 2a 反應而生成nitronate 3a。之後再將溶液倒入冰浴之稀酸水溶液中可得到亞硝基烷 (nitroso alkane),此產物是由 nitronate 先進行合環再進行開環反應而產生的中間體,此證據可由反應後分離到偶氮雙氧化合物 (此產物為亞硝基烷的二聚體) 得到證明。同樣的情況 1a也可以和diethyl allylmalonate的陰離子 2b和diisopropyl allylmalonate的陰離子 2c 進行相似的反應。如果把反式的β-硝基苯乙烯 1a和3-butenyl-magnesium bromide反應,則在相同條件下進行反應及處理下只會生成硝基烷 (nitroalkane)。
偶氮雙氧化合物 (azodioxides) 在室溫下會自行解離成亞硝基烷(nitroso alkanes),而後又迅速地雙聚成偶氮雙氧化合物 (azodioxides);若把溫度提升到四氫喃迴流的溫度,則偶氮雙氧化合物會轉變成 (oximes)。
第一部分
Reactions of trans-β-nitrostyrene 1a with the anion of dimethyl malonate 2a generated the nitronate 3a in THF solution. When 3a was treated with phosphorus trichloride in the presence of DMAP in THF solution or in pyridine solution only, nitroalkane 4a, chlorooxime 5a, and nitrile 6a were isolated (Table 1). When the addition reaction to generate 3a was conducted in THF solution and the transformation of the 3a into final products was conducted in the cosolvent of THF-pyridine solution at room temperature or both reactions were all conducted in THF solution only in the presence of DMAP under refluxing. Only trace of nitroalkane 7a, some of bicyclic product 8a, and little of nitrile 9a were generated when 1a reacted with the anion of dimethyl allylmalonate 2b and then with PCl3 in THF solution under different conditions (Table 4). Similarly, tricyclic product 11a and nitrile 12a also were prepared by reaction of 1a with the anion of dimethyl 3-cyclohexenylmalonate 2c and PCl3. All these results indicate that nitronates can be converted into nitroalkanes, chlorooximes, and nitriles by PCl3 or can be converted into nitroalkanes, polycyclic products, and nitriles by PCl3 in
the presence of dipolarphiles。
第二部分
Reaction of trans-β-nitrostyrene 1a with the anion of dimethyl malonate 2a generated the nitronate 3a in THF solution. Then 3a can undergo cycloaddition and ring opening to generate azodioxides via the intermediate nitroso alkanes. Similarly, 1a also could react with the anion of diethyl allylmalonate or the anion of diisopropyl allylmalonate to generate azodioxides. When 1a reacted with 3-butenyl-magnesium bromide and was workup under similar conditions, only nitroalkane 4e was generated.
At room temperature, azodioxides dissociated to nitroso alkanes, and dimerized to obtain azodioxides again. Azodioxides can transform into oximes in THF solution under refluxing.
第一部份
(1) (a) Grundmann, C. in Houben-Weyl. Methoden der Organischen Chemie, 10:3.; Müller, E.; Ed.; Georg Thieme Verlag, Stuttgart, 1965; p 837; E5:2, Falbe, J.; Ed.; 1985, pp1585. (b) W. Rundel in Houben-Weyl. Methoden der Organischen Chemie, 10:4.; Müller, E.; Ed.; Georg Thieme Verlag, Stuttgart, 1968; p 311. (c) Quilico, A. Experientia 1970, 26, 1169. (d) Grundmann, C.; Grünanger, P. in The Nitrile Oxides, Springer-Verlag, Berlin, 1971. (e) Caramella, P.; Grünanger, P. in 1,3-Dipolar Cycloaddition Chemistry, Padwa, A.; Ed.; Vol. 1, Wiley, New York, 1984, pp 291. (f) Kozikowski, A. P. Acc. Chem. Rev. 1984, 17, 410. (g) Torsell, K. B. G. Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis, VCH; New York, 1988. (h) Mulzer, J. in Organic Synthesis Highlights, VCH, Weinheim, 1991, p 77. (i) Wade, P. A. in Comprehensive Organic Synthesis, Trost, B. M., Ed.; Pergamon Press. Oxford, 1991, Vol 3, p 1111. (j) Jager, V.; Muller, R.; Leibold, T.; Hein, M.; Schwartz, M, Fengler, M.; Jarskova, L. Patzel, M.; LeRoy, P. Y. Bull. Soc. Chim. Bel. 1994, 103, 491. (k) Namboothiri, I. N. N.; Hassner, A Top. Curr. Chem. 2001, 216, 1. (l) Ono, N. in The Nitro Group in Organic Synthesis, WILEY-VCH, New York, 2001.
(2) Christl, M.; Huisgen, R. Chem. Ber. 1873, 106, 3345.
(3) Wener, A.; Buss, H. Chem. Ber. 1894, 127, 2193.
(4) Lee, G. A. Synthesis 1982, 508.
(5) Grundmann, C. Richter, R. J. Org. Chem. 1968, 33, 476.
(6) Mukaiyama, T.; Hoshino, T. J. Am. Chem. Soc. 1960, 82, 5339.
(7) Chen, Y.-J.; Li, C.-N. J. Chin. Chem. Soc. 1993, 40, 203.
(8) (a) Friedrich, K.; Wallenfels, K. In The Chemistry of the Cyano Group; Rappaport, Z., Ed.; Wiley-Interscience Publishers: New York, 1970; p 67. (b) Fatiadi, A. J. In Preparation and synthetic applications of cyano compounds; Patai, S., Rappaport, Z., Eds.; Wiley: New York, 1983; p 1057. (c) Miller, J. S.; Manson, J. L. Acc. Chem. Res. 2001, 34, 563.
(9) F. Texier-Boullet, D. Villemin, M. Ricard, H. Moison et A. Foucaud Tetrahedron 1985, 41, 1259.
(10) Kim, S.; Yi, K. Y. Tetrahedron Lett. 1986, 27, 1925.
(11) Arrieta, A.; Aizpurua, J. M.; Palomo, C. Tetrahedron Lett. 1984, 25, 3365.
(12) Wehrli, P. A.; Schaer, B. J. Org. Chem. 1977, 42, 3956.
(13) (a) Yao, C.-F.; Chen, W.-C.; Lin, Y.-M. Tetrahedron Lett, 1996, 37, 6339. (b) Yao, C.-F.; Yang, C.-S.; Fang, H.-Y. Tetrahedron Lett, 1997, 38, 6419. (c) Yao, C.-F.; Kao, K.-H.; Liu, J.-T.; Chu, C.-M.; Wang, Y.; Chen, W.-C.; Lin, Y.-M.; Lin, W.-W.; Yan, M.-C.; Liu, J.-Y.; Chuang, M.-C.; Shiue, J.-L. Tetrahedron 1998, 54, 791. (d) Kao, K.-H.; Yang, C.-S.; Liu, J.-T; Lin, W.-W.; Fang, H.-Y.; Yao, C.-F.; Chen. C. Tetrahedron 1998, 54, 13997. (e) Liu, J.-Y.; Yan, M.-C.; Lin, W.-W.; Wang, L.-Y.; Yao, C.-F. J. Chem. Soc., Perkin Trans. 1. 1999, 1215. (f) Liu, J.-T; Lin, W.-W.; Jang, J.-J.; Liu, J.-Y.; Yan, M.-C.; Hung, C.; Kao, K.-H.; Wang, Y.; Yao, C.-F. Tetrahedron 1999, 55, 7115. (g) Yan, M.-C.; Liu, J.-Y.; Lin, W.-W.; Kao, K.-H.; Liu, J.-T; Jang, J.-J.; Yao, C.-F. Tetrahedron 1999, 55, 12493.
(14) (a) Varma, R. S.; Dahiya, R.; Kumar, S. Tetrahedron Lett, 1997, 38, 5131. (b) McNulty, J.; Steere, J. A.; Wolf, S. Tetrahedron Lett, 1998, 39, 8013. (c) Campos, P. J.; Barcia, B.; Rodriguez, M. A. Tetrahedron Lett, 2000, 41, 979.
(15) (a)Arnau, N.; Moreno-Manas, M.; Pleixats, R.; Tetrahedron 1993, 49, 11019. (b) Wulfman, D. S. Tetrahedron 1976, 32, 1257.
第二部份
1. Hassner, A.; Dehaen, W. Chem. Ber. 1991, 1181.
2. Hassner, A.; Friedman, O.; Dehaen, W. J. Org. Chem. 1997, 62, 587.
3. Namboothiri I. N. N.; Hassner, A.; Gottlieb H. E. J. Org. Chem. 1997, 62, 485.
4. Hassner, A.; Friedman, O.; Dehaen, W. Liebigs Ann. 1997, 3, 587.
5. Denmark, S. E.; Seierstad, M.; Herbert, B. J. Org. Chem. 1999, 64, 884.
6. Jung M. E.; Binh T. V. Tetrahedron 1996, 37, 451.
7. Stowell, J. C. J. Org. Chem. 1971, 36, 3055.
8. Greene, F. D.; GilbertlC, K. E. J. Org. Chem. 1975, 40, 1409.
9. Greer, M. L.; Sarker, H.; Mendicino, M. E.; Blackstock, S. C. J. Am. Chem. Soc. 1995, 117, 10460.
10. Wen, R.; Laronze, J. Y.; Levy, J. Heterocycles 1984, 22, 1061.
11. Kochergin, P. M.; Titkova, R. M. Russ. J. Org. Chem. 1994, 30, 1042.
12. Deleris, G.; Dunogues, J.; Gadras, A. Tetrahedron 1988, 44, 243.
13. Harding, K. E.; Burks, S. R. J. Org. Chem. 1984, 49, 40.