簡易檢索 / 詳目顯示

研究生: 林芮慶
Lin, Ruei-Cing
論文名稱: 基於交叉耦合電壓下降法之最佳化鋰電-超級電容混合電能管理系統
Optimal Battery-Supercapacitor Hybrid Power System Based on Cross-coupled Droop Control Method
指導教授: 陳瑄易
Chen, Syuan-Yi
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 159
中文關鍵詞: 生物地理演算法最小等效能耗法規則庫混合電力系統電壓下降法交叉耦合控制直流-直流轉換器
英文關鍵詞: biogeographic-based optimization, equivalent consumption minimization strategy, hybrid power system, rule-based control, droop control method, cross-coupled control, DC-DC converter
DOI URL: http://doi.org/10.6345/NTNU202001231
論文種類: 學術論文
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 3 1.3 研究目的 8 1.4 研究架構 9 第二章 DC-DC轉換器系統介紹 11 2.1 DC-DC升/降壓轉換器 11 2.1.1 DC-DC轉換器降壓模式 11 2.1.2 DC-DC轉換器升壓模式 13 2.2 雙向DC-DC轉換器模式分析 16 2.3 多模組DC-DC轉換器控制架構 19 2.3.1 主動均流法 20 2.3.2 電壓下降法 25 2.3.3 改良型電壓下降法 30 2.3.4 交叉耦合電壓下降法 33 第三章 交叉耦合電壓下降法之PSIM模擬 37 3.1 PSIM軟體介紹 37 3.2 PID控制系統 38 3.3 電壓下降法之PSIM軟體建模 40 3.4 改良型電壓下降法之PSIM軟體建模 45 3.5 交叉耦合電壓下降法之PSIM軟體建模模 50 3.6 自動主僕法應用於內迴路調節架構之PSIM建模 55 3.7 模擬結果比較 60 第四章 交叉耦合電壓下降法之實驗介紹與結果討論 63 4.1 實驗平台介紹 63 4.1.1 系統硬體介紹 64 4.2 交叉耦合電壓下降法之實驗結果 71 4.3 實驗結果比較 76 第五章 混合電能系統之最佳化能量管理策略 78 5.1 鋰電池模組[36][45] 78 5.2 超級電容模組[46] 80 5.3 基本規則庫控制策略 82 5.4 最小等效能耗法控制策略 84 5.5 生物地理演算法 88 5.5.1 生物地理學之數學模型 89 5.5.2 生物地理演算法流程[29] 92 5.5.3 生物地理演算法之能量管理控制策略 95 5.6 改良型生物地理演算法 97 5.6.1 改良型生物地理演算法之能量管理控制策略 100 第六章 最佳化能量管理策略之Matlab模擬 103 6.1 車輛動態模型 103 6.1.1 行車型態 105 6.2 基本規則庫控制策略之模擬結果 108 6.3 最小等效能耗控制策略之模擬結果 111 6.4 生物地理演算法控制策略之模擬結果 113 6.5 改良型生物地理演算法控制策略之模擬結果 115 6.6 模擬結果之能耗比較 117 第七章 實驗平台介紹與結果討論 121 7.1 實驗平台說明 121 7.2 WMTC行車型態實驗結果 124 7.2.1 基本規則庫控制策略之實驗結果 124 7.2.2 最小等效能耗策略之實驗結果 127 7.2.3 生物地理演算法策略之實驗結果 129 7.2.4 改良型生物地理演算法之實驗結果 132 7.3 NEDC行車型態實驗結果 135 7.3.1 基本規則庫控制策略之實驗結果 135 7.3.2 最小等效能耗策略之實驗結果 138 7.3.3 生物地理演算法策略之實驗結果 141 7.3.4 改良型生物地理演算法之實驗結果 144 7.4 實驗結果之能耗比較 147 第八章 結論與未來展望 151 8.1 結論 151 8.2 未來展望 152 參考文獻 153

    [1]B. Mammano, “Distributed power systems,” Proceedings
    of Unitrode Power Supply Design Seminar , pp. 1-11,
    1993。
    [2]B. Laszlo “Paralleling Power Choosing and Applying the
    Best Technique for Load Sharing”, Proc. Texas Instrum,
    pp. 6-1, 2003.
    [3]X. Siri, C. Q. Lee, and T. F. Wu, “Current
    Distribution Control for Parallel Connected
    Converters,” IEEE Trans. on Aerospace and Electronic
    Systems, pp. 841-850, 1992.
    [4]K. I. Hwu, and T. J. Peng, “A Novel Buck-Boost
    Converter Combining KY and Buck Converters,” IEEE
    Transactions on Power Electronics, vol. 27, pp. 2236-
    2241
    [5]J. G. Ziegler, and N. B. Nichols, “Optimum Settings
    for Automatic Controllers,” Transactions of the ASME,
    vol. 64, pp. 759-768, 1942
    [6]Sriramalakshmi Palanidoss, and Theja V S Vishnu,
    “Experimental Analysis of Conventional Buck and Boost
    Converter with Integrated Dual Output Converter,”
    International Conference on Electrical, Electronics,
    Communication, Computer, and Optimization Technique
    (ICEECCOT), 2017
    [7]M. M. Khan, and Z. M. Wu, “Large Signal Discrete-Time
    Model for Paralleled Buck Converters,” Journal of
    Shanghai Jiaotong University, vol. E-7, no. 1, pp. 54-
    58
    [8]K. B. Liu, C. Y. Liu, Y. H. Liu, Y. C. Chien, B. S.
    Wang, and Y. S. Wong, “Analysis and Controller Design
    of a Universal Bidirectional DC-DC Converter,”
    Energies 2016, 9, 501
    [9]K. Yao, Y. Qiu, M. Xu, and Fred C. Lee, “A Novel
    Winding-Coupled Buck Converter for High-Frequency,
    High-Step-Down DC-DC Conversion,” IEEE Transaction on
    Power Electronics, vol. 20, pp. 1017-1024
    [10]S. V. Dhople, A. Davoudi, A. D. Dominguez-Garcia, and
    P. L. Chapman, “A Unified Approach to Reliability
    Assessment of Multiphase DC-DC Converters in
    Photovoltaic Energy Conversion Systems,” IEEE
    Transactions on Power Electronics, vol. 27, pp. 739-
    751
    [11]A. Berasategi, C. Paragua, B. Estibals, Y. El Basri,
    L. Seguier, A. Ramond, C. Carrejo, and C. Alonso, “An
    Adaptive Control developed for Multi-Phase Converters
    Based on Look-Up Tables and applied to Photovoltaic
    Conversion Systems,” IECON 2012 – 38th Annal
    Conference on IEEE Industrial Electronics Society,
    2012
    [12]S. N. Soheli, G. Sarowar, A. Hoque, and S. Hasan,
    “Design and Analysis of a DC-DC Buck Boost Converter
    to Achieve High Efficiency and Low Voltage Gain by
    Using Buck Boost Topology into Buck Topology,”
    International Conference on Advancement in Electrical
    and Electronic Engineering, 2018
    [13]H. Y. Kanaan, and K. Al-Haddad, “Modeling and
    Simulation of DC-DC Power Converters in CCM and DCM
    Using the Switching Function Approach: Application to
    the Buck and Cùk Converters,” International
    Conference on Power Electronics and Drives Systems,
    2005
    [14]T. F. Wu, and Y. K. Chen, “Modeling PWM DC/DC
    Converters Out of Basic Converter Units,” IEEE
    Transactions on Power Electronics, vol. 13, pp. 870-
    881
    [15]G. W. Wester, and R. D. Middlebrook, “Low-frequency
    Characterization of Switched DC-DC Converters,” IEEE
    Power and Electronics Specialists Conference, 1972
    [16]M. Shahriman M. Sarif, T. X. Pei, and A. Z. Annuar,
    “Modeling, Design and Control of Bidirectional DC-DC
    Converter Using State-Space Average Model,” IEEE
    Symposium on Computer Application & Industrial
    Electronics, 2018
    [17]H. Y. Kanaan, and K. Al-Haddad, “A comparison between three modeling approaches for computer implementation of high-fixed-switching-frequency power converters operating in a continuous mode,” in Proc. CCECE2002, Canada, May 12-15, vol. 1, pp. 274-279
    [18]W. C. So, C. K. Tse, and Y. S. Lee, “Development of a Fuzzy Logic Controller for DC/DC Converters: Computer Simulation, and Experimental Evaluation,” IEEE Transactions on Power Electronic, vol. 11, no. 1, pp. 24-32
    [19]K. Bendaoud, S. Krit, M. Kabrane, H. Ouadani, M. Elaskri, K. Karimi, H. Elbousty, and L. Elmaimouni, “Implementation of Fuzzy Logic Controller (FLC) for DC-DC Boost Converter Using Matlab/Simulink,” International Journal of Sensors and Sensor Networks, vol. 5, pp. 1-5
    [20]R. Ramos, D. Biel, E. Fossas, R. Griño, “Sliding mode controlled multiphase buck converter with interleaving and current equalization,” Control Engineering Practice, vol. 21, pp. 737-746
    [21]B. Taheri, M. Sedaghat, M. A. Bagherpour, and P. Farhadi, “A New Controller for DC-DC Converters Based on Sliding Mode Control Techniques,” Journal of Control, Automation and Electrical Systems, 2018
    [22]C. Jamerson, and C. Mullett, “Seven Ways to Parallel a Magamp,” IEEE APEC, pp. 469-474, 1993
    [23]H. C. Chiang, K. K. Jen, and G. H. You, “Improved droop control method with precise current sharing and voltage regulation,” IET Power Electronics, vol. 9, no. 4, pp. 789-800, 2016
    [24]S. Anand, and B. G. Fernandes, “Modified droop controller for paralleling of dc-dc converters in standalone dc system,” IET Power Electronics, vol. 5, pp. 782-789, 2012
    [25]A. Borrell, M. Castilla, J. Miret, J. Matas, and L. G. Vicuña, “Simple Low-Cost Hysteretic Controller for Multiphase Synchronous Buck Converters,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2355-2365, 2011
    [26]J. B. Wang, “Parallel DC/DC converters system with a novel primary droop current sharing control,” IET Power Electronics, vol. 5, no. 8, pp. 1569-1580, 2012
    [27]Y. Koren, “Cross-Coupled Biaxial Computer for Manufacturing Systems,” ASME. Journal of Dynamic System, Measurement and Control, vol. 102, no. 4, pp. 265-272
    [28]陳韋帆,生物地理學演算法於非排列式流程型工廠之排程,碩士論文,國立臺北科技大學工業工程與管理系,臺北,2011
    [29]D. Simon, “Biogeography-Based Optimization,” IEEE Transactions on Evolutionary Computation, vol. 12, pp. 702-713, 2008
    [30]林信全,基因演算法最佳化應用於THS油電混合動力系統,碩士論文,國立臺北科技大學電機工程學系,臺北,2017
    [31]陳映全,油電混合車動力系統之可靠度分析,碩士論文,國立臺灣大學機械工程學研究所,臺北,2016
    [32]劉冠駿,六期機車汙染於打檔車計算換檔時機影響之研究,碩士論文,大華科技大學機電工程研究所,新竹,2016
    [33]E. Vinot, “Comparison of different power-split architectures using a global optimization design method,” Electric and Hybrid Vehicles, vol. 8, no. 3, 2016
    [34]S. Y. Chen, B. C. Yang, T. A. Pu, C. H. Chang, and R. C. Lin, “Active Current Sharing of a Parallel DC-DC Converters System Using Bat Algorithm Optimized Two-DOF PID Control,” IEEE Access, vol. 7, pp. 84757-84769, 2019
    [35]楊博丞,基於蝙蝠演算法之二自由度PID控制器應用於直流-直流轉換器平台,國立臺灣師範大學電機工程學系,臺北,2018
    [36]卜擇安,布穀鳥演算法應用於混合燃料電池電動機車之最佳能量管理,國立臺灣師範大學電機工程學系,臺北,2019
    [37]鄭明憲,具即時監測雙向並聯直流轉換器之研製,碩士論文,國立成功大學電機工程學系,臺南,2005
    [38]C. S. Lin, and C. L. Chen, “Single-Wire Current-Share Paralleling of Current-Mode-Controlled DC Power Supplies,” IEEE Transactions on Industrial Electronics, vol. 47, no. 4, pp. 780-786, 2000
    [39]Y. Panov, and M. M. Jovanović, “Loop Gain Measurement of Paralleled DC-DC Converters With Average-Current-Sharing Control,” IEEE Transactions on Power Electronics, vol. 23, no. 6, pp. 2942-2948, 2008
    [40]J. Han, and J. H. Song, “Phase Current-Balance Control Using DC-Link Current Sensor for Multiphase Converters With Discontinuous Current Mode Considered,” IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp. 4020-4030, 2016
    [41]S. Luo, Z. Ye, R. L. Lin, and F. C. Lee, “A Classification and Evaluation of Paralleling Methods for Power Supply Modules,” in Proc. IEEE PESC, 1999, pp. 952-956
    [42]王勇勝,應用智慧型交叉耦合控制器於多軸線性馬達之高精度運動控制,碩士論文,大葉大學機械與自動化工程學系碩士班,2013
    [43]PSIM User’s Guide, Powersim Inc, 2016.
    [44]Texas Instruments Inc., “TMS320F2833x, TMS320F2823x Digital Signal Controllers(DSCs), rev B”, 2016.
    [45]S. Y. Chen, Y. H. Hung, C. H. Wu, and S. T. Huang, “Optimal energy management of a hybrid electric powertrain system using improved particle swarm optimization,” Applied Energy, vol. 173, pp. 184-196, 2016.
    [46]李鎧麟,人工蜂群演算法應用於三電力電動車系統之最佳能量管理,碩士論文,國立臺灣師範大學工業教育學系,臺北,2018
    [47]J. Li, Z. Fu, and X. Jin, “Rule based energy management strategy for a battery/ultra-capacitor hybrid energy storage system optimized by pseudospectral method,” Energy Procedia, 105(2017), pp. 2703-2711
    [48]Q. Zhang, W. Deng, S. Zhang, and J. Wu, “A Rule Based Energy Management System of Experimental Battery/Supercapacitor Hybrid Energy Storage System for Electric Vehicles,” Journal of Control Sicience and Engineering, vol. 2016, pp. 1-17
    [49]S. Onori, L. Serrao, and G. Rizzoni, Hybrid Electric Vehicles: Energy Management Strategies, Springer London, 2016.
    [50]P. Pisu, and G. Rizzoni, “A comparative study of supervisory control strategies for hybrid electric vehicles,” IEEE Transactions on Control Systems Technology, vol. 15, no. 3, pp. 506-518, 2007.
    [51]I. Hanski, and M. Gilpin, Merapopulation Bioligy. New York: Academic, 1997.
    [52]T. Wesche, G. Goertler, and W. Hubert, “Modified habitat suitability index model for brown trout in southeastern Wyoming,” North Amer. J. Fisheries Manage., vol. 7, 1987, pp. 232-237
    [53]R. MacArthur, and E. Wilson, The Theory of Biogeography. Princeton, NJ: Princeton Univ. Press, 1967.
    [54]H. Ma, and D. Simon, “Blended biogeography-based optimization for constrained optimization”, Engineering Applications of Artifical Intelligence, vol. 24, no. 3, pp. 517-525, 2011.
    [55]H. Ma, “An analysis of the equilibrium of migration models for biogeography-based optimization”, Information Sciences, vol. 180, no.8, pp. 3444-3464, 2010.
    [56]S. Y. Chen, Y. H. Hung, C. H. Wu, and S. T. Huang, “Optimal energy management of a hybrid electric powertrain system using improved particle swarm optimization,” Applied Energy, vol. 160, pp. 132-145, 2015.
    [57]Pngtree圖片素材,取自於https://zh.pngtree.com/freepng/scooter_3637449.html

    無法下載圖示 電子全文延後公開
    2025/09/01
    QR CODE