簡易檢索 / 詳目顯示

研究生: 陳雅慧
論文名稱: 台灣產跑蛛科核型之研究
A Karyological Study on the Pisaurid Spiders of Taiwan
指導教授: 陳世煌
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 65
中文關鍵詞: 蜘蛛目跑蛛科染色體核型
英文關鍵詞: Araneae, Pisauridae, chromosome, karyotype
論文種類: 學術論文
相關次數: 點閱:442下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    台灣產跑蛛科目前記錄有黑背狡蛛、褐腹狡蛛、溪狡蛛、赤條狡蛛、長觸肢跑蛛、華麗四角蛛、跑蛛及白條跑蛛8種。前人僅止於種類紀錄的調查、形態的描述與零星生態方面的報導,並無更深入的研究。在細胞遺傳學方面,染色體資料的建立將可彌補形態分類的不足,並提供系統演化方面另一有用的證據,本研究以染色體的核型來看跑蛛科演化親緣關係,並推測染色體可能的演化方向。
    本研究共獲得台灣產跑蛛科4屬7種的核型資料。染色體形態均為端著絲點染色體,狡蛛屬(除褐腹狡蛛外)、長觸肢跑蛛、跑蛛及白條跑蛛在內的4屬6種,其染色體數目均為2N = 30 (F)/28 (M);性別決定機制為X1X2O型;NF值為30 (F)/28 (M)。首次發現褐腹狡蛛染色體數目2N = 20 (F)/19 (M);性別決定機制為XO型;NF值為20 (F)/19 (M)。在C-顯帶染色方面,推測台灣產跑蛛科蜘蛛的C-顯帶應位於端著絲點染色體的中節。在NORs方面,台灣產跑蛛科蜘蛛NORs均只有一對,其中溪狡蛛及黑背狡蛛均位於第5對染色體上;跑蛛位於第14對;白條跑蛛位於第12對上;長觸肢跑蛛位於第3對上;赤條狡蛛位於第2對上;褐腹狡蛛位於第6對上。染色體核型方面,共可分為六種典範核型,包括褐腹狡蛛型、溪狡蛛型、赤條狡蛛型、長觸肢跑蛛型、跑蛛型以及白條跑蛛型,六種典範核型非常相似。在性染色體方面,溪狡蛛、長觸肢跑蛛、跑蛛及白條跑蛛共4種,性染色體均為第1對及第15對;赤條狡蛛為第1及第9對;褐腹狡蛛只有一對性染色體為第5對;而黑背狡蛛因資料不足無法正確判斷。性別決定機制XO型由X1X2O型經性染色體接合演化而來。染色體演化方面,跑蛛型為台灣產跑蛛科中最原始的,而白條跑蛛型、長觸肢跑蛛型及溪狡蛛型三者的親緣關係無法區分。在狡蛛屬內,我推測狡蛛屬中溪狡蛛型為較原始的種類,其次為赤條狡蛛型,褐腹狡蛛為型最進化的種類,染色體數目朝向減少的方向進行。
    期望以上資料的建立,能提供一些資訊,對於蜘蛛染色體演化及親緣關係探討等相關研究有所幫助。

    Abstract
    The pisaurid spiders of Taiwan consist of eight known species: i.e. Dolomedes horishanus, D. mizhoanus, D. raptor, D. saganus, Hygropoda higenaga, Perenethis venusta, Pisaura sp., and Thalassius phipsoni. There is no advanced research but only few studies related to the spider fauna records, morphological descriptions, and some ecological works have been reported in Taiwan. Chromosome data proved to be useful in animal phylogeny. The present study focuses on the relationships of pisaurid spiders in Taiwan via cytogenetial approaches.
    Four genera and seven species of pisaurid spiders from Taiwan were successfully karyotyped. All members of the genus Dolomedes (except D. mizhoanus), Hygropoda higenaga, Pisaura sp., and Thalassius phipsoni have the same chromosome numbers with 2N = 30 in females and 28 in males, X1X2O type sex–determining mechanism, and NF vales with 30 in females and 28 in males. Dolomedes mizhoanus has chromosome numbers with 2N = 20 in females and 19 in males, XO type sex–determining mechanism, and NF vales of 20 in female and 19 in male. All are tolecentric chromosome in all karyotyped materials.
    The C – bands of chromosomes in Taiwanese pisaurid spiders are presumed in centromere of tolecentric chromosomes. There is only one pair of Ag – NORs in each studied pisaurid spiders. The positions of Ag – NORs in karyopypes are located at the distal ends of the 5th pair in Dolomedes horishanus and D. raptor, at the 14th pair in Pisaura sp., at the 12th pair in Thalassius phipsoni, at the 2nd pair in D. saganus, and at the 6th pair in D. mizhoanus.The karyotype of family Pisauridae can be grouped into six forms, i.e. D. mizhoanus form, D. raptor form, D. saganus form, Hygropoda higenaga form, Pisaura form, and Thalassius phipsoni form.The sex chromosomes are the 1st and 15th pairs in the karyotype of Dolomedes raptor, Hygropoda higenaga, Pisaura sp., and Thalassius phipsoni, the 1st and 9th pairs of Dolomedes saganus, and the 5th pairs of Dolomedes mizhoanus. The sex chromosomes of Dolomedes horishanus are remained unknown. The X1X2O type sex-determining mechanism is proposed to be primitive and the XO type is to be derived from the X1X2O type by fusion of the sex–chromosomes.
    For the evolution of pisaurid chromosomes from Taiwan, we proposed that the model karyotype of Pisaura form should be the most primitive in Pisauridae, and the Hygropoda higenaga form, Thalassius phipsoni form and Dolomedes raptor form were derived. Dolomedes raptor form is the most primitive model karyotype of the genus then is the Dolomeds saganus form, and the Dolomedes mizhoanus form is proposed to be the most derived form. The direction of the evolution of chromosome numbers in the family Pisauridae is from high to low.
    We hope our data can provide some useful cues in the chromosome evolution and relationships of spiders.

    目錄 一.前言----------------------------------------------------1 二.材料與方法----------------------------------------------5 三.結果---------------------------------------------------10 四.討論---------------------------------------------------15 五.總結---------------------------------------------------31 六.圖表---------------------------------------------------33 七.參考文獻-----------------------------------------------52 附錄一----------------------------------------------------55 附錄二----------------------------------------------------57 表 表一 台灣產跑蛛科核型研究材料一覽表-----------------------33 表二 台灣地區跑蛛科蜘蛛染色體的相對長度(RTL)、臂長比(AR)、型態(Type) ------------------------------------------------34 表三 以Wilcoxon rank sum test檢測染色體排序的正確性-------36 表四 跑蛛科蜘蛛染色體數目及性別決定機制一覽表-------------37 表五 跑蛛科蜘蛛的染色體相長對度以Euclidean Distance軟體換算成距離----------------------------------------------------37 表六 『溪狡蛛型』的典範核型-------------------------------38 表七 赤條狡蛛型與褐腹狡蛛型染色體的相對長度(RTL)、臂長比(AR)及染色體型態(Type)的比較----------------------------------39 表八 赤條狡蛛型與褐腹狡蛛型染色體(性染色體不列入計算)的相對長度(RTL)、臂長比(AR)及染色體型態(Type)的比較-------------40 表九 赤條狡蛛型與褐腹狡蛛型染色體(性染色體及NORs所在染色體不列入計算)的相對長度(RTL)、臂長比(AR)及染色體型態(Type)的比較--------------------------------------------------------41 圖 圖一 跑蛛科蜘蛛的採集地點,包括黑背狡蛛、褐腹狡蛛、溪狡蛛及赤條狡蛛--------------------------------------------------42 圖二 跑蛛科蜘蛛的採集地點,包括長觸肢跑蛛、跑蛛及白條跑蛛-43 圖三 黑背狡蛛的核型圖,包括雌蛛、雄蛛及雌蛛NORs的位置-----44 圖四 褐腹狡蛛的核型圖,包括雌蛛、雄蛛及雌蛛NORs的位置-----44 圖五 溪狡蛛的核型圖,包括雌蛛、雄蛛及雌蛛NORs的位置-------45 圖六 赤條狡蛛的核型圖,包括雌蛛、雄蛛及雌蛛NORs的位置-----45 圖七 長觸肢跑蛛蛛的核型圖,包括雌蛛、雄蛛及雌蛛NORs的位置-46 圖八 跑蛛的核型圖,包括雌蛛、雄蛛及雄蛛NORs的位置---------46 圖九 白條跑蛛的核型圖,包括雌蛛、雄蛛及雌蛛NORs的位置-----47 圖十 台灣產跑蛛科蜘蛛的核型柱狀圖-------------------------48 圖十一 長觸肢跑蛛的C-顯帶染色-----------------------------49 圖十二 台灣產跑蛛科蜘蛛核型群集分析樹形圖-----------------49 圖十三 利用染色體核型資料推測台灣產跑蛛科屬間親緣關係支序圖-----------------------------------------------------------50 圖十四 中國產跑蛛科蜘蛛之親緣關係支序圖-------------------51

    參考文獻
    Berry, E. H. 1906. The accessory chromosome in Epeira. Biol. Bull. 11:193-201.
    Blake, J. A. 1986. Complex chromosomal variation in natural populations of the Jamaican lizard Anolis grahami. Genetica 69:3-17.
    Bogart, J. P. 1972. Karyotypes. In: Evolution in the genus Bufo. W. F. Blair (ed.). University of Texas Press, Austin.
    Bogart, J. P. 1973. Evolution of an anuran karyotypes. In: evolutionary biology of the Anurans. J. L. Vial (ed). Univ. Missori Press, Columbia, pp. 337-349.
    Chen, S.-H. 1999. Cytological studies on six speies of spiders from Taiwan (Araneae: Theridiidae, Psechridae, Uloboridae, Oxyopidae, and Ctenidae). Zoological Studies 38:423-434.
    Chen, S.-H. 2001. Cytogenetic study of the lower central American frogs of the subgenus Craugastor (Anura: Leptodactylidae: Eleutherodactylus). Ph.D. dissertation, University of Miami, Coral Gables, 369 pp.
    Chen, S.-H., and Y.-T. Chen. 2002. Note on a newly recorded spider, Perenethis venusta L. Koch 1878, from Taiwan (Araneae: Pisauridae). BioFormosa 37:31-35.
    Chikuni, Y. 1989. Pictorial Encylopedia of Spiders in Japan. Kaisei – sha Publ. Co., Tokyo, 310 pp.
    Coddington, J. A., and H. W. Levi. 1991. Systematics and evolution of spiders (Araneae). Annual Review of Ecology and Systematics 22:565-592.
    Cowda, B. N. B. 1950. The chromosome study in the spermatogenesis of two lynx - spiders (Oxyopidae). Proc. Zool. Soc. Bengal 3:95-107.
    Datta, S. N., and K. Chatterjee. 1983. Chromosome number and sex - determning system in fifty - two species of spiders from north - east India. Chromos. Inform. Serv. 35:6-8.
    DeWeese, J. E. 1976. The karyotypes of Middle American frogs of the genus Eleutherodactylus (Anura: Leptodactylidae): a case of the significance of the karyologic method. Ph.D. dissertation, University of Southern California, Los Angeles, 210 pp.
    Fang, K., C.-C. Yang, B.-W. Lue, S.-H. Chen, and K.-Y. Lue. 2000. Phylogenetic corroboration of superfamily Lycosoidae spiders (Araneae) as inferred from patial mitochondrial 12S and 16S ribosomal DNA sequences. Zoological Studies 39:107-113.
    Griswold, C. E. 1993. Investigations into the phylogeny of the Lycosoid spiders and their kin (Arachnida: Araneae: Lycosoidea). Smithsonian Contributions to Zoology 539:1-39.
    Hackman, W. 1948. Chromosomen studien an Araneen. Acta Zool. Fennica 54:1-104.
    Howell, W. M. 1977. Visualization of ribosomal gene activity: silver stains proteins associated with rRNA transcribed from oocyte chromosomes. Chromosoma (Berl) 62:361-367.
    Howell, W. M., and D. A. Black. 1980. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014-1015.
    Jordan, D. K., T. L. Burns, J. E. Divelbiss, R. F. Woolson, and S. R. Patil. 1990. Variability in expression of common fragile sites: in search of a new criterion. Human Genet. 85:462-466.
    King, M. 1980. C-banding studies on Austraalian hylid frogs: secondary constriction structure and the concept of euchromatin transformation. Chromosoma (Berl) 80:191-217.
    King, M., N. Conteras, and R. L. Honeycutt. 1990. Variation within and between nucleolar organizer regions in Australian hylid frogs (Anura) shown by 18S+28S in - situ hybridization. Genetica 80:17-29.
    Kuramoto, M., and A. Allison. 1989. Karyotypes of microhylid frogs of papua new guinea and their systematic implications. Herpetologica 45:250-259.
    Lehtinen, P. T. 1967. Description d'une araignee nouvelle: Landana baforti n. sp. (Archaeidae), en provenance du Congo. Revue Zool. Bot. afr. 76:92-98.
    Levan, A., K. Fredga, and A. A. Sandberg. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52:201-220.
    Macgregor, H. C. 1993. An introduction to animal cytogenetics. Chapman & Hall.
    Matsumoto, S. 1977. An observation of somatic chromosomes from spider embryo-cells. Acta Arachnol. 27:167-172.
    Miller, O. J., D. A. Miller, R. Tantravahi, and V. G. Dev. 1978. Nucleolus organizer activity and the orgin of Robertsonian translocations. Cytogenet. Cell Genet. 20:40-50.
    Miller, O. J., and E. Therman. 2001. Human chromosomes. 4th ed. Spring-Verlag, N. Y.:501 pp.
    Odierna, G., E. Olmo, and O. Cobor. 1985. C-banding variability in some Lacertidae (Sauria, Reptillia). Experientia 41:944-946.
    Pardue, M. L., and W. Hennig. 1990. Heterochromatin: junk or collectors item? Chromosoma (Berl) 100:3-7.
    Patau, K. 1936. Cytologische Untersuchangen an der haploid-parthenogenetischen Milbe Pedicaloides ventricosus newp. Zool.Jahrb. Pyhsiol. 561:277-322.
    Platnick, N. I. 2005. The world spider catalog, version 5.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/INTRO1.html.
    Qumsiych, M. B., and R. J. Baker. 1988. Comparative cytogenetics and the determination of primitive karyotypes. Cytogenet. Cell Genet. 47:100-103.
    Roewer, C. F. 1955. Katalog der Araneen von 1758 bis 1940, bzw. 1954. Bruxelles 2:1-1751.
    Rudak, E., and H. G. Gallan. 1976. Differential staining and chromatin packing of the mitotic chromosomes of the newt Triturus cirstatus. Chromosoma (Berl) 56:349-362.
    Ruiz, I. R. G., M. Soma, and W. Becak. 1981. Nucleolar organizer regions and constitutive heterochromatin in polyploid species of the genus Odontophrynus (Amphibia, Anura). Cytogenet. Cell Genet. 29:84-98.
    Savage, J. M. 1987. Systematics and distribution of Maxican and Central American rainfrogs of the Eleutherodactylus gollmeri group (Amphibia: Leptodactylidae). Fieldiana: Zool., new ser. 33:1-57.
    Schmid, M. 1978. Chromosome banding in Amphibia I. Constitutive heterochromatin and nucleolus organizer regions in Bufo and Hyla. Chromosoma (Berl) 66:361-388.
    Schmid, M. 1982. Chromosome banding in Amphibia. VII. Analysis of the structure and variability of NORs in Anura. Chromosoma (Berl) 87:327-344.
    Simon, E. 1898. Historie Naturelle des Araignes. Paris, 2:193-380.
    Sumner, A. T. 1972. A simple technique for demostrating centromeric heterochromatin. Exptl. Cell Res. 75:304-306.
    Suzuki, S. 1951. Cytological studies in spiders. I. A comparative study of the chromsomes in the family Argiopidae. J. Sci. Hiroshima Univ. (Ser. B) 12:67-98.
    Suzuki, S. 1952. Cytological studies in spiders II. Chromosomal investigation in the twenty two species of spiders belonging to the four families, Clubionidae, Sparassidae, Thomisidae and Oxyopidae, which constitute Clubionoidea, with special reference to sex cheomosomes. J. Sci. Hiroshima Univ. (Ser. B) 13:1-52.
    Suzuki, S. 1954. Cytological studies in spiders III. Studies on the chromosomes of fifty-seven species of spiders belongong to seventeen families, with general considerations on chromosomal evolution. J. Sci. Hiroshima Univ. (Ser. B) 15:23-136.
    Tugmon, C. R., J. D. Brown, and N. V. Horner. 1990. Karyotypes of seventeen USA spider species (Araneae, Araneidae, Gnaphosidae, Loxoscelidae, Lycosidae, Oxyopidae, Philodromidae, Salticidae and Theridiidae). J. of Arachnol. 18:41-48.
    White, M. J. D. 1940. The origin and evolution of multiple sex - chromosome mechanisms. J. Genet. 40:303-336.
    Zhang, J.-X., M.-S. Zhu, and D.-X. Song. 2004. A review of the Chinese nursery-web spiders (Araneae, Pisauridae). J. of Arachnol. 32:353-417.
    王秀珍、王佑舉、楊震玲、崔素娟、趙素珍。1996 a。迷宮漏斗蛛Agelena labyrinthica的染色體。蛛形學報 5(2):137-140.
    王秀珍、王佑舉、楊震玲、崔素娟。1996 b。家隅蛛科的染色體。蛛形學報 5(2)141-144.
    王秀珍、崔素娟、楊震玲、王建平、王佑舉。1997。近親幽靈蛛的核型。蛛形學報 6(1):19-22.
    王秀珍、王建平。1998 a。底栖類球蛛的核型分析。蛛形學報7(1):42-44.
    王秀珍、王建平。1998 b。奇異球蛛的核型分析。蛛形學報 7(1):45-47.
    王佑舉、王秀珍、崔素娟、楊震玲。1995。溫室希蛛染色體的觀察。蛛形學報 4(1):37-40.
    王佑舉、宋大祥、王秀珍。1993。4種蜘蛛染色體研究初報。蛛形學報2(2):110-113
    王佑舉、楊震玲。1990。蜘蛛血細胞染色體製片法。河北教育學院院報(自然科學版) 6:94-95
    李長林。1964。台灣的蜘蛛。大江出版社。84頁
    吳琛、單耀軍。2002。蜘蛛目染色體核型研究進展。河北大學學報 22(1): 97-103
    高保齡。1994。台灣北部地區靜止水域共棲蛙種間資源分配利用之研究。國立台灣師範大學生物研究所碩士論文。台北。
    陳世煌。1996。台灣地區蜘蛛名錄。台灣省立博物館年刊 39:123-156
    陳世煌。2001。台灣常見蜘蛛圖鑑。行政院農業委員會。
    張永靖,童慎境。1990。蜘蛛染色體的常規製片技術。動物學雜誌 25(6):30-31.
    彭宇、胡萃、趙敬釗、陳建。1998 a。真水狼蛛染色體組型分析。蛛形學報 7(2):142-145
    彭宇、胡萃、趙敬釗。1998 b。擬水狼蛛染色體的初步觀察。浙江農業大學學報24(3):291-294.
    楊震玲、王秀珍、王佑舉、崔素娟。1997。類水狼蛛的核型。蛛形學報 6(1):23-25.
    楊震玲、王秀珍、王佑舉、崔素娟、扈海英。1996。星豹蛛Pardosa astigera染色體組分析。蛛形學報5(2):145-148.

    QR CODE