研究生: |
賴筱婷 Lai, Hsiao-Ting |
---|---|
論文名稱: |
「預測-觀察-解釋」策略在高中教學之應用—銅循環實驗 Prediction-Observation-Explanation Strategy in High School Teaching: The Copper Cycle |
指導教授: |
張一知
Chang, I-Jy |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 銅循環實驗 、銅鏡反應 、「預測-觀察-解釋」策略 、探究與實作 |
英文關鍵詞: | copper cycle, copper mirror, Prediction-Observation-Explanation (POE) strategy, inquiry and practice |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DC.017.2018.B05 |
論文種類: | 學術論文 |
相關次數: | 點閱:163 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究銅循環實驗的最佳化設計,以高中生為對象,設計可在高中實驗室執行的實驗步驟,並以「預測-觀察-解釋」策略 (POE 策略) 進行實驗流程的規畫,進一步探討最佳化的銅循環實驗和 POE 策略對學生的學習是否有所幫助。
銅循環實驗以 0.10 克金屬銅粉為起始物,在熱的 5% CH3COOH 溶液中 (約 90 ℃) 可被 3% H2O2 溶液進行氧化,生成藍綠色的 Cu(CH3COO)2 溶液。待冷卻後,在溶液中滴入 4 M 的 NaOH 溶液,產生藍色的 Cu(OH)2 沉澱。將沉澱浸泡在 80 ℃ 以上的熱水中,會生成黑色的 CuO 沉澱。滴入 6 M H2SO4 後,黑色沉澱消失,得到藍色的 CuSO4 溶液。利用容量瓶把 CuSO4 溶液稀釋至 10 毫升後,取出 5 毫升放入 7 毫升樣品瓶中,再加入 1 毫升的 35% N2H4 溶液,將樣品瓶浸泡在熱水中 5-10 分鐘,可見到容器壁還原生成紅色的銅鏡。
針對高中資優班學生共 58 人進行實驗課程,對照組學生 29 人,實驗組學生 29 人,皆分為 10 組。學生進行實驗操作後,講述式教學 (對照組) 學生的產率為 113 ± 29%、POE 策略 (實驗組) 學生的產率為 142 ± 44%。
在課後問卷調查中,有 77% 的學生在進行完銅循環實驗後,願意花時間進行其他實作實驗。在實驗組中,有 81% 的學生同意 POE 策略對學習動力和喜歡化學的程度有所幫助。
A safe, convenience, bench-top copper cycle has been designed for high school students. Prediction-Observation-Explanation strategy (POE) strategy was incorporated to the experimental processes to evaluate students’ operation.
Copper cycle involves 5 reactions. The first reaction is copper oxidation. Place 0.10 g of copper powder in hot 5% CH3COOH solution (~ 90 ℃). The oxidation by 3% H2O2 is sufficient to give a blue-green copper acetate solution. Adding 4 M NaOH solution into the solution dropwise forms blue Cu(OH)2 precipitates. When the suspension is immersed in hot water (> 80 °C), a black CuO precipitates formed. With the addition of 6 M H2SO4, the precipitates dissolve and result a blue CuSO4 solution. Dilute the CuSO4 solution to 10 mL using a volumetric flask. Transfer 5 mL into a 7 mL vial and add 1 mL of 35% N2H4 solution. Immerse the vial in hot water for 5-10 minutes. Shining copper mirror appears on the vial’s wall.
A total of 58 high school students had conducted the experiments. The control group taught by regular method had 29 students, divided into 10 groups, and the experiment group taught by POE method had 29 students, also divided into 10 groups. After the students completed the experiments, the yield of the control group was 113 ± 29%, and the POE method group was 142 ± 44%.
From the questionnaire survey, 77% of the students were willing to spend time for other experiments after the copper cycle experiment. The experiment group, 81% of students agree that POE method are helpful for academic motivation and the passion for chemistry.
1. 教育部(2003)。國民中小學九年一貫課程綱要。
2. 教育部(2015)。十二年國民基本教育課程綱要。
3. Condike, G. Near 100% Student Yields with the "Cycle of Copper Reactions" Experiment. J. Chem. Educ. 1975, 52, 615.
4. Umans, T.; de Vos, W. An Improved Copper Cycle Experiment. J. Chem. Educ. 1982, 59, 52.
5. Todd, D.; Hobey, W. An Improvement in the Classical Copper Cycle Experiment. J. Chem. Educ. 1985, 62, 177.
6. Bailar, J. A Further Improvement on the Copper Cycle Experiment. J. Chem. Educ. 1983, 60, 583.
7. Freeman, S.; Eddy, S.; McDonough, M.; Smith, M.; Okoroafor, N.; Jordt, H.; Wenderoth, M. Active Learning Increases Student Performance in Science, Engineering, and Mathematics. Proc. Natl. Acad. Sci. 2014, 111, 8410-8415.
8. Gunstone, R. F.; White, R. T. Understanding of Gravity. Sci. Educ. 1981, 65, 291-299.
9. Wade, L. Microscale Organic Laboratory. J. Chem. Educ. 1987, 64, A191.
10. Kösy, F. A Volatile Compound of Copper. Nature 1947, 160, 21-21.
11. Pike, R. Metals in Metal Salts: A Copper Mirror Demonstration. J. Chem. Educ. 2010, 87, 1062-1063.
12. Ahluwalia, V.; Raghav, S. Comprehensive Experimental Chemistry for Class XII; New Delhi: New Age International Limited, 1997; p 123.
13. Kemp, M. Silver Mirror. J. Chem. Educ. 1981, 58, 655.
14. Murphy, J.; Ackerman, A.; Heeren, J. Recovery of Silver from and Some Uses for Waste Silver Chloride. J. Chem. Educ. 1991, 68, 602.
15. Hill, J.; Foss, D.; Scott, L. A Copper Mirror: Electroless Plating of Copper. J. Chem. Educ. 1979, 56, 752.
16. Zhou, J.; Wu, Z.; Zhang, Z.; Liu, W.; Xue, Q. Tribological Behavior and Lubricating Mechanism of Cu Nanoparticles in Oil. Tribol. Lett. 2000, 8, 213-218.
17. Rastogi, L.; Arunachalam, J. Synthesis and Characterization of Bovine Serum Albumin–Copper Nanocomposites for Antibacterial Applications. Colloids Surf. B Biointerfaces. 2013, 108, 134-141.
18. 教有部(2015)。十二年國民基本教育課程綱要國民中學教育階段學習重點,p.23。
19. Lavoisier, A. Traité Èlémentaire de Chimie; Edwards: Ann Arbor, Michigan, 1945.
20. Bare, W.; Goldsby, K.; Duffy, D.; Shaw, S. More Chemistry in a Soda Bottle: A Conservation of Mass Activity. J. Chem. Educ. 1995, 72, 734.
21. Champagne, A.; Klopfer, L.; Anderson, J. Factors Influencing the Learning of Classical Mechanics. Am. J. Phys. 1980, 48, 1074-1079.
22. Abell, S.; Appleton, K.; Hanuscin, D. Designing and Teaching the Elementary Science Methods Course, New York: Routledge, 2010; p 308.
23. Devetak, I.; Glažar, S. “Evaluation of the Predict-Observe-Explain Instructional Strategy to Enhance Students’ Understanding of Redox Reactions,” in Learning with Understanding in the Chemistry Classroom, Dordrecht: Springer Netherlands, 2014; p 265-286.
24. Gil, V.; Paiva, J. Questions and How to Differentiate Predictionand Explanationin Chemistry Teaching and Learning. J. Chem. Educ. 2010, 87, 1324-1328.
25. Chiu, M. Chemistry Education and Sustainability in the Global Age, Dordrecht: Springer, 2013; p 352.
26. Ebenezer, J.; Chacko, S.; Kaya, O. N.; Koya, S. K.; Ebenezer, D. L. The Effects of Common Knowledge Construction Model Sequence of Lessons on Science Achievement and Relational Conceptual Change. J. Res. Sci. Teach. 2010, 47, 25-46.
27. Savander-Ranne, C.; Kolari, S. Promoting the Conceptual Understanding of Engineering Students through Visualization. Glob. J. Eng. Educ. 2003, 7, 189-199.
28. Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice, Oxford University Press: New York, 1998; p 30.
29. Kitchens, C.; Charney, R.; Naistat, D.; Farrugia, J.; Clarens, A.; O'Neil, A. et al. Completing Our Education. Green Chemistry in the Curriculum. J. Chem. Educ. 2006, 83, 1126.
30. Bell, B.; Bradley, J. D.; Chemistry Education: Best Practices, Opportunities and Trends, Wiley-VCH: Germany, 2015; p 539-562.
31. Tesfamariam, G.; Lykknes, A.; Kvittingen, L. Small-scale Chemistry for a Hands-on Approach to Chemistry Practical Work in Secondary Schools: Experiences from Ethiopia. Afr. J. Chem. Educ. 2014, 4, 48-94.
32. Bradley, J. The Microscience Project and Its Impact on Pre-Service and In-Service Teacher Education. Washington, DC: The World Bank, 2000; p 1215-1219.
33. Zipp, A. Introduction to "The Microscale Laboratory". J. Chem. Educ. 1989, 66, 956.
34. Sulcius, A. Reactions of Metals in Nitric Acid: Writing Equations And Calculating Electromotive Force of Redox Reaction. J. Chem. Educ. 2015, 92, 1971-1972.
35. Wailes, R. B. Tests of Copper. PopSci. 1936, 1, 50.
36. Sylva, R. The Environmental Chemistry of Copper (II) in Aquatic Systems. Water Res. 1976, 10, 789-792.
37. Symes, J.; Kester, D. Copper(II) Interaction with Carbonate Species Based on Malachite Solubility in Perchlorate Medium at the Ionic Strength of Seawater. Mar. Chem. 1985, 16, 189-211.
38. Vink, B. W. Stability Relations of Malachite and Azurite. Mineral. Mag. 1986, 50, 41-47.
39. Kiseleva, I.; Ogorodova, L.; Melchakova, L.; Bisengalieva, M.,; Becturganov, N. Thermodynamic Properties of Copper Carbonates - Malachite Cu2(OH)2CO3 and Azurite Cu3(OH)2(CO3)2. Phys. Chem. Miner. 1992, 19, 322-333.
40. Singh, D.; Ojha, A.; Srivastava, O. Synthesis of Different Cu(OH)2 and CuO (Nanowires, Rectangles, Seed-, Belt-, and Sheetlike) Nanostructures by Simple Wet Chemical Route. J. Phys. Chem. C 2009, 113, 3409-3418.
41. Hunsom, M.; Pruksathorn, K.; Damronglerd, S.; Vergnes, H.; Duverneuil, P. Electrochemical Treatment of Heavy Metals (Cu2+, Cr6+, Ni2+) from Industrial Effluent and Modeling of Copper Reduction. Water Res. 2005, 39, 610-616.
42. Jusys, Z.; Vaskelis, A. Mechanism Of Copper(II) Reduction By Formaldehyde Studied By On-Line Mass Spectrometry. Langmuir 1992, 8, 1230-1231.
43. Dumesic, J.; Koutsky, J.; Chapman, T. The Rate of Electroless Copper Depositionby Formaldehyde Reduction. J. Electrochem. Soc. 1974, 121, 1405.
44. Wiese, H.; Weil, K. On the Mechanism of Electroless Copper Deposition. Ber. Bunsenges. Phys. Chem. 1987, 91, 619-626.
45. Vaškelis, A.; Jačiauskienė, J.; Stalnionienė, I.; Norkus, E. Accelerating Effect of Ammonia on Electroless Copper Deposition in Alkaline Formaldehyde-Containing Solutions. J. Electroanal. Chem. 2007, 600, 6-12.
46. Lin, Y.; Yen, S. Effects of Additives and Chelating Agents on Electroless Copper Plating. Appl. Surf. Sci. 2001, 178, 116-126.
47. Martin, R. The Mechanism of the Cannizzaro Reaction of Formaldehyde. Aust. J. Chem. 1954, 7, 335.
48. Nikoloska, M.; Petruševski, V. An Improved Copper Mirror Demonstration. J. Chem. Educ. 2011, 88, 1406-1406.