簡易檢索 / 詳目顯示

研究生: 王樂
WANG, LE
論文名稱: 基於IPDD方法的沉浸式虛擬實境腦中風上肢復健系統服務模式設計及其臨床導入驗證
Design and Clinical Validation of an Immersive VR Upper Limb Stroke Rehabilitation System Service Model based on the IPDD Approach
指導教授: 曾俊儒
Tseng, Kevin Chun-Ju
梁桂嘉
Liang, Kuei-Chia
口試委員: 曾俊儒
Tseng, Kevin Chun-Ju
梁桂嘉
Liang, Kuei-Chia
李仁貴
Lee, Ren-Guey
蔣尚霖
Chiang, Shang-Lin
蔡采璇
Tsai, Tsai-Hsuan
口試日期: 2024/06/17
學位類別: 博士
Doctor
系所名稱: 設計學系
Department of Design
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 158
中文關鍵詞: 創新產品設計與開發方法虛擬實境腦中風復健復健系統服務模式
英文關鍵詞: IPDD, virtual reality, stroke rehabilitation, rehabilitation system service model
研究方法: 實驗設計法調查研究個案研究法比較研究觀察研究半結構式訪談法
DOI URL: http://doi.org/10.6345/NTNU202401797
論文種類: 學術論文
相關次數: 點閱:132下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與目標 3 第三節 研究範圍與限制 4 第四節 研究架構 5 第五節 研究的創新性與意義 7 第貳章 文獻探討 9 第一節 腦中風上肢運動功能障礙的復健現狀與挑戰 9 一、 腦中風上肢功能障礙的流行病學和影響 9 二、 傳統復健方法的特點及局限性 10 三、 復健資源短缺 11 第二節 腦中風上肢復健方法的研究 12 一、 傳統復健方法 12 二、 機器輔助復健訓練 12 三、 新興復健療法 14 第三節 虛擬實境技術在腦中風復健中的應用 15 一、 虛擬實境復健的技術特點與優勢 15 二、 VR在腦中風上肢復健中的應用進展 16 三、 不同類型VR系統(螢幕版vs沉浸式)的比較 17 四、 VR復健系統的理論基礎 18 五、 VR復健遊戲的設計原則和關鍵考慮因素 19 六、 VR系統的評估指標和方法 20 七、 技術與現有復健設備的整合趨勢 23 第四節 創新產品設計與開發方法 26 一、 IPDD方法 26 二、 IPDD方法與其他開發方法的比較 27 第五節 系統服務模式設計相關研究 29 一、 服務設計在醫療領域的應用 29 二、 復健服務模式的演變 29 三、 服務模式設計在提升患者體驗和復健效果方面的作用 30 第六節 文獻總結 31 第參章 研究方法 33 第一節 IPDD方法在本研究中的應用 33 第二節 需求分析方法 34 一、 Meta分析 34 二、 影像分析 34 第三節 系統服務模式設計方法 37 一、 服務藍圖 37 二、 系統架構設計 37 三、 原型開發與迭代 37 第四節 評估與驗證方法 38 一、 功能性和可行性驗證 38 二、 使用性和用戶體驗評估 38 三、 臨床導入初步驗證 38 第五節 評估工具 40 一、 系統使用性評估 40 二、 內在動機評估 40 三、 臨床效果評估工具 41 四、 質性數據收集 41 五、 數據分析工具 42 第肆章 IVR腦中風上肢復健系統服務模式設計 43 第一節 需求分析 43 一、 Meta分析 43 二、 影像分析 44 第二節 系統服務模式規劃 49 一、 服務藍圖設計 49 二、 系統服務模式規劃 50 三、 醫院使用場景設計 52 第三節 系統服務模式設計 53 一、 系統服務模式架構設計 53 二、 軟體模組規劃 54 三、 硬體整合方案 57 四、 系統服務模式工作流程 57 第伍章 系統服務模式驗證 61 第一節 實驗室測試 62 一、 驗證方法 62 二、 驗證結果 66 第二節 初步臨床試驗 74 一、 試驗設計 74 二、 試驗結果 75 第陸章 討論 83 第一節 系統服務模式可行性 83 第二節 臨床成效和復健體驗 86 第三節 IPDD方法的應用效果 88 第四節 局限性與未來展望 89 第柒章 結論 91 第一節 研究總結 91 第二節 主要研究發現 92 第三節 研究貢獻 93 一、 理論貢獻 93 二、 實踐貢獻 93 第四節 研究限制 94 第五節 未來研究方向 95 參考文獻 97 專有名詞對照表 106 附錄 107 附錄一 功能測試標準化記錄表 107 附錄二 SUS系統使用性問卷 108 附錄三 IMI內在動機量表興趣/享受分量表 109 附錄四 訪談大綱(實驗室內部測試健康人) 110 附錄五 FMA-UE傅格梅爾動上肢運動功能量表 111 附錄六 FIM功能性獨立量表 113 附錄七 相關研究發表論文 114

    曾俊儒. (2021). 具腦機介面控制之互動式上肢復健系統平台暨復健資料庫系統之開發. 科技部補助專題研究計畫成果報告.
    曾俊儒. (2024). 結合虛擬實境嚴肅遊戲與新型上肢復健機器人協助亞急性中風患者遠距復健. 國家科學及技術委員會補助研究計畫.
    Adamovich, S. V., Fluet, G. G., Tunik, E., & Merians, A. S. (2009). Sensorimotor training in virtual reality: A review. NeuroRehabilitation, 25(1), 29-44. https://doi.org/10.3233/NRE-2009-0497
    Alliance, A. (2001). Manifesto for agile software development.
    Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An empirical evaluation of the system usability scale. International Journal of Human–Computer Interaction, 24(6), 574-594.
    Bank, P. J., Cidota, M. A., Ouwehand, P. W., & Lukosch, S. G. (2018). Patient-tailored augmented reality games for assessing upper extremity motor impairments in Parkinson’s disease and stroke. Journal of medical systems, 42(12), 246. https://doi.org/10.1007/s10916-018-1100-9
    Bass, L. (2012). Software architecture in practice. Pearson Education India.
    Bate, P., & Robert, G. (2007). Toward more user-centric OD: lessons from the field of experience-based design and a case study. The Journal of Applied Behavioral Science, 43(1), 41-66. https://doi.org/10.1177/0021886306297
    Bitner, M. J., Brown, S. W., & Meuter, M. L. (2000). Technology infusion in service encounters. Journal of the Academy of marketing Science, 28(1), 138-149. https://doi.org/10.1177/0092070300281
    Bitner, M. J., Ostrom, A. L., & Morgan, F. N. (2008). Service blueprinting: A practical technique for service innovation. California management review, 50(3), 66-94. https://doi.org/10.2307/41166446
    Bolton, R., & Saxena-Iyer, S. (2009). Interactive Services: A Framework, Synthesis and Research Directions. Journal of interactive marketing, 23(1), 91-104. https://doi.org/10.1016/j.intmar.2008.11.002
    Brennan, D. M., Mawson, S., & Brownsell, S. (2009). Telerehabilitation: Enabling the remote delivery of healthcare, rehabilitation, and self management. In Advanced Technologies in Rehabilitation (pp. 231-248). IOS Press. https://doi.org/10.3233/978-1-60750-018-6-231
    Brokaw, E. B., Black, I., Holley, R. J., & Lum, P. S. (2011). Hand Spring Operated Movement Enhancer (HandSOME): A portable, passive hand exoskeleton for stroke rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(4), 391-399. https://doi.org/10.1109/TNSRE.2011.2157705
    Brooke, J. (1996). SUS-A quick and dirty usability scale. Usability evaluation in industry, 189(194), 4-7.
    Brown, T. (2008). Design thinking. Harvard business review, 86(6), 84.
    Cameirão, M. S., Badia, S. B. I., Oller, E. D., & Verschure, P. F. (2010). Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: Methodology, design, psychometrics, usability and validation. Journal of neuroengineering and rehabilitation, 7, 1-14. https://doi.org/10.1186/1743-0003-7-48
    Chan, D. Y., Chan, C. C., & Au, D. K. (2006). Motor relearning programme for stroke patients: A randomized controlled trial. Clinical rehabilitation, 20(3), 191-200. https://doi.org/10.1191/0269215506cr930oa
    Chen, J., Jin, W., Zhang, X.-X., Xu, W., Liu, X.-N., & Ren, C.-C. (2015). Telerehabilitation approaches for stroke patients: Systematic review and meta-analysis of randomized controlled trials. Journal of Stroke and Cerebrovascular Diseases, 24(12), 2660-2668. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.09.014
    Cheung, K. L., Tunik, E., Adamovich, S. V., & Boyd, L. A. (2014). Neuroplasticity and virtual reality. In P. L. Weiss, E. A. Keshner, & M. F. Levin (Eds.), Virtual Reality for Physical and Motor Rehabilitation (pp. 5-24). Springer New York. https://doi.org/10.1007/978-1-4939-0968-1
    Clements, P. C. (2002). Software architecture in practice. Software Engineering Institute.
    Cooper, R. G. (2008). Perspective: The stage‐gate® idea‐to‐launch process—update, what's new, and nexgen systems. Journal of product innovation management, 25(3), 213-232.
    Crosbie, J., Lennon, S., McGoldrick, M., McNeill, M., & McDonough, S. (2012). Virtual reality in the rehabilitation of the arm after hemiplegic stroke: A randomized controlled pilot study. Clinical rehabilitation, 26(9), 798-806. https://doi.org/10.1177/0269215511434575
    Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience HarperCollins New York.
    De Maria, C., Di Pietro, L., Lantada, A. D., Madete, J., Makobore, P. N., Mridha, M., Ravizza, A., Torop, J., & Ahluwalia, A. (2018). Safe innovation: On medical device legislation in Europe and Africa. Health Policy and Technology, 7(2), 156-165. https://doi.org/10.1016/j.hlpt.2018.01.012
    Deci, E. L., & Ryan, R. M. (2013). Intrinsic motivation and self-determination in human behavior. Springer Science & Business Media.
    Díaz, I., Gil, J. J., & Sánchez, E. (2011). Lower-limb robotic rehabilitation: literature review and challenges. Journal of Robotics, 2011. https://doi.org/10.1155/2011/759764
    Duncan, P. W., Propst, M., & Nelson, S. G. (1983). Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Physical therapy, 63(10), 1606-1610.
    Faria, A. L., Cameirão, M. S., Couras, J. F., Aguiar, J. R., Costa, G. M., & Bermúdez i Badia, S. (2018). Combined cognitive-motor rehabilitation in virtual reality improves motor outcomes in chronic stroke–a pilot study. Frontiers in psychology, 9, 854. https://doi.org/10.3389/fpsyg.2018.00854
    FDA. (2024). Product classification [EB/OL].  Retrieved from https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpcd/classification.cfm
    Feigin, V. L., Norrving, B., & Mensah, G. A. (2017). Global burden of stroke. Circulation research, 120(3), 439-448. https://doi.org/10.1161/CIRCRESAHA.116.308413
    Fluet, G. G., & Deutsch, J. E. (2013). Virtual reality for sensorimotor rehabilitation post-stroke: The promise and current state of the field. Current physical medicine and rehabilitation reports, 1, 9-20. https://doi.org/10.1007/s40141-013-0005-2
    Freina, L., & Ott, M. (2015). A literature review on immersive virtual reality in education: State of the art and perspectives. The International Scientific Conference Elearning and Software for Education,
    Freire, K., & Sangiorgi, D. (2010). Service design and healthcare innovation: From consumption to co-production to co-creation. Proceedings of 2nd Service Design and Service Innovation conference, ServDes. 2010,
    Gangemi, A., De Luca, R., Fabio, R. A., Lauria, P., Rifici, C., Pollicino, P., Marra, A., Olivo, A., Quartarone, A., & Calabrò, R. S. (2023). Effects of virtual reality cognitive training on neuroplasticity: A quasi-randomized clinical trial in patients with stroke. Biomedicines, 11(12), 3225. https://doi.org/10.3390/biomedicines11123225
    Gladstone, D. J., Danells, C. J., & Black, S. E. (2002). The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabilitation and neural repair, 16(3), 232-240. https://doi.org/10.1177/154596802401105171
    Glegg, S. M., & Holsti, L. (2010). Measures of knowledge and skills for evidence-based practice: A systematic review. Canadian Journal of Occupational Therapy, 77(4), 219-232. https://doi.org/10.2182/cjot.2010.77.4.4
    Han, K. J., & Kim, J. Y. (2016). The effects of bilateral movement training on upper limb function in chronic stroke patients. Journal of physical therapy science, 28(8), 2299-2302. https://doi.org/10.1589/jpts.28.2299
    Hatem, S. M., Saussez, G., Della Faille, M., Prist, V., Zhang, X., Dispa, D., & Bleyenheuft, Y. (2016). Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Frontiers in human neuroscience, 10, 442. https://doi.org/10.3389/fnhum.2016.00442
    Heath, C., Hindmarsh, J., & Luff, P. (2010). Video in qualitative research. Sage Publications.
    Holden, M. K. (2005). Virtual environments for motor rehabilitation. Cyberpsychology & behavior, 8(3), 187-211. https://doi.org/10.1089/cpb.2005.8.18
    Holden, R. J., & Karsh, B.-T. (2010). The technology acceptance model: Its past and its future in health care. Journal of biomedical informatics, 43(1), 159-172.
    Howard, M. C. (2017). A meta-analysis and systematic literature review of virtual reality rehabilitation programs. Computers in Human Behavior, 70, 317-327. https://doi.org/10.1016/j.chb.2017.01.013
    Iruthayarajah, J., McIntyre, A., Cotoi, A., Macaluso, S., & Teasell, R. (2017). The use of virtual reality for balance among individuals with chronic stroke: A systematic review and meta-analysis. Topics in stroke rehabilitation, 24(1), 68-79. https://doi.org/10.1080/10749357.2016.1192361
    Jacknis, I. (1988). Margaret Mead and Gregory Bateson in Bali: Their use of photography and film. Cultural anthropology, 3(2), 160-177. https://www.jstor.org/stable/656349
    Johnson, M. J. (2006). Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke. Journal of neuroengineering and rehabilitation, 3, 1-6. https://doi.org/10.1186/1743-0003-3-29
    Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The international journal of aviation psychology, 3(3), 203-220.
    Keshner, E. A. (2004). Virtual reality and physical rehabilitation: A new toy or a new research and rehabilitation tool? In (Vol. 1, pp. 1-2): Springer.
    Keshner, E. A., Weiss, P. T., Geifman, D., & Raban, D. (2019). Tracking the evolution of virtual reality applications to rehabilitation as a field of study. Journal of neuroengineering and rehabilitation, 16(1), 76. https://doi.org/10.1186/s12984-019-0552-6
    Krakauer, J. W. (2006). Motor learning: Its relevance to stroke recovery and neurorehabilitation. Current opinion in neurology, 19(1), 84-90. https://doi.org/10.1097/01.wco.0000200544.29915.cc
    Kwakkel, G., Kollen, B. J., & Krebs, H. I. (2008). Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabilitation and neural repair, 22(2), 111-121. https://doi.org/10.1177/1545968307305457
    Lang, C. E., Bland, M. D., Bailey, R. R., Schaefer, S. Y., & Birkenmeier, R. L. (2013). Assessment of upper extremity impairment, function, and activity after stroke: Foundations for clinical decision making. Journal of Hand Therapy, 26(2), 104-115. https://doi.org/10.1016/j.jht.2012.06.005
    Lange, B., Koenig, S., Chang, C.-Y., McConnell, E., Suma, E., Bolas, M., & Rizzo, A. (2012). Designing informed game-based rehabilitation tasks leveraging advances in virtual reality. Disability and rehabilitation, 34(22), 1863-1870. https://doi.org/10.3109/09638288.2012.670029
    Langhorne, P., Bernhardt, J., & Kwakkel, G. (2011). Stroke rehabilitation. The Lancet, 377(9778), 1693-1702. https://doi.org/10.1016/S0140-6736(11)60325-5
    Laver, K. E., Lange, B., George, S., Deutsch, J. E., Saposnik, G., & Crotty, M. (2017). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews(11). https://doi.org/10.1002/14651858.CD008349.pub4
    Legg, L., Drummond, A., Leonardi-Bee, J., Gladman, J., Corr, S., Donkervoort, M., Edmans, J., Gilbertson, L., Jongbloed, L., & Logan, P. (2007). Occupational therapy for patients with problems in personal activities of daily living after stroke: systematic review of randomised trials. Bmj, 335(7626), 922. https://doi.org/10.1136/bmj.39343.466863.55
    Levin, M. F., Weiss, P. L., & Keshner, E. A. (2015). Emergence of virtual reality as a tool for upper limb rehabilitation: Incorporation of motor control and motor learning principles. Physical therapy, 95(3), 415-425.
    Lidwell, W., Holden, K., & Butler, J. (2010). Universal principles of design, revised and updated: 125 ways to enhance usability, influence perception, increase appeal, make better design decisions, and teach through design. Rockport Pub.
    Lo, A. C., Guarino, P. D., Richards, L. G., Haselkorn, J. K., Wittenberg, G. F., Federman, D. G., Ringer, R. J., Wagner, T. H., Krebs, H. I., & Volpe, B. T. (2010). Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 362(19), 1772-1783. https://doi.org/10.1056/NEJMoa0911341
    Lohse, K. R., Hilderman, C. G., Cheung, K. L., Tatla, S., & Van der Loos, H. M. (2014). Virtual reality therapy for adults post-stroke: A systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PloS one, 9(3), e93318. https://doi.org/10.1371/journal.pone.0093318
    Lukács, M., Vécsei, L., & Beniczky, S. (2008). Large motor units are selectively affected following a stroke. Clinical Neurophysiology, 119(11), 2555-2558. https://doi.org/10.1016/j.clinph.2008.08.005
    Lum, P. S., Burgar, C. G., Shor, P. C., Majmundar, M., & Van der Loos, M. (2002). Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Archives of physical medicine and rehabilitation, 83(7), 952-959. https://doi.org/10.1053/apmr.2001.33101
    Maclean, N., Pound, P., Wolfe, C., & Rudd, A. (2000). Qualitative analysis of stroke patients' motivation for rehabilitation. Bmj, 321(7268), 1051-1054. https://doi.org/10.1136/bmj.321.7268.1051
    Maggio, M. G., Maresca, G., De Luca, R., Stagnitti, M. C., Porcari, B., Ferrera, M. C., Galletti, F., Casella, C., Manuli, A., & Calabrò, R. S. (2019). The growing use of virtual reality in cognitive rehabilitation: fact, fake or vision? A scoping review. Journal of the National Medical Association, 111(4), 457-463. https://doi.org/10.1007/s10072-018-3580-3
    Marchal-Crespo, L., & Reinkensmeyer, D. J. (2009). Review of control strategies for robotic movement training after neurologic injury. Journal of neuroengineering and rehabilitation, 6, 1-15. https://doi.org/10.1186/1743-0003-6-20
    Massetti, T., Da Silva, T. D., Crocetta, T. B., Guarnieri, R., De Freitas, B. L., Bianchi Lopes, P., Watson, S., Tonks, J., & de Mello Monteiro, C. B. (2018). The clinical utility of virtual reality in neurorehabilitation: A systematic review. Journal of central nervous system disease, 10, 1179573518813541. https://doi.org/10.1177/1179573518813541
    Mehrholz, J., Pohl, M., Platz, T., Kugler, J., & Elsner, B. (2018). Electromechanical and robot‐assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database of Systematic Reviews(9). https://doi.org/10.1002/14651858.CD006876.pub5
    Naro, A., & Calabro, R. S. (2021). What do we know about the use of virtual reality in the rehabilitation field? A brief overview. Electronics, 10(9), 1042. https://doi.org/10.3390/electronics10091042
    Nawaz, A., Skjæret, N., Helbostad, J. L., Vereijken, B., Boulton, E., & Svanaes, D. (2016). Usability and acceptability of balance exergames in older adults: A scoping review. Health informatics journal, 22(4), 911-931. https://doi.org/10.1177/1460458215598638
    Nielsen, J. (1994). Usability engineering. Morgan Kaufmann.
    Pei, Y.-C., Chen, J.-L., Wong, A. M., & Tseng, K. C. (2017). An evaluation of the design and usability of a novel robotic bilateral arm rehabilitation device for patients with stroke. Frontiers in neurorobotics, 11, 36. https://doi.org/10.3389/fnbot.2017.00036
    Planetta, P. J., Kurani, A. S., Shukla, P., Prodoehl, J., Corcos, D. M., Comella, C. L., McFarland, N. R., Okun, M. S., & Vaillancourt, D. E. (2015). Distinct functional and macrostructural brain changes in p arkinson's disease and multiple system atrophy. Human brain mapping, 36(3), 1165-1179. https://doi.org/10.1002/hbm.22694
    Pourmand, A., Davis, S., Marchak, A., Whiteside, T., & Sikka, N. (2018). Virtual reality as a clinical tool for pain management. Current pain and headache reports, 22, 1-6. https://doi.org/10.1007/s11916-018-0730-1
    Pramuka, M., & Van Roosmalen, L. (2009). Telerehabilitation technologies: Accessibility and usability. International journal of telerehabilitation, 1(1), 85.
    Prange, G. B., Jannink, M., Groothuis-Oudshoorn, C., Hermens, H. J., & IJzerman, M. J. (2009). Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. https://www.rrd.nl/wp-content/uploads/2021/08/23-Proefschrift-Gerdienke-Prange.pdf#page=23
    Proffitt, R., & Lange, B. (2015). Considerations in the efficacy and effectiveness of virtual reality interventions for stroke rehabilitation: Moving the field forward. Physical therapy, 95(3), 441-448.
    Rathore, S. S., Hinn, A. R., Cooper, L. S., Tyroler, H. A., & Rosamond, W. D. (2002). Characterization of incident stroke signs and symptoms: Findings from the atherosclerosis risk in communities study. Stroke, 33(11), 2718-2721. https://doi.org/10.1161/01.STR.0000035286.87503.31
    Rehme, A. K., Eickhoff, S. B., Wang, L. E., Fink, G. R., & Grefkes, C. (2011). Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage, 55(3), 1147-1158. https://doi.org/10.1016/j.neuroimage.2011.01.014
    Reinkensmeyer, D. J., Emken, J. L., & Cramer, S. C. (2004). Robotics, motor learning, and neurologic recovery. Annual Review of Biomedical Engineering, 6, 497-525. https://doi.org/10.1146/annurev.bioeng.6.040803.140223
    Rizzo, A. A., Schultheis, M., Kerns, K. A., & Mateer, C. (2004). Analysis of assets for virtual reality applications in neuropsychology. Neuropsychological rehabilitation, 14(1-2), 207-239. https://doi.org/10.1080/09602010443000010
    Rose, F. D., Brooks, B. M., & Rizzo, A. A. (2005). Virtual reality in brain damage rehabilitation. Cyberpsychology & behavior, 8(3), 241-262. https://doi.org/10.1089/cpb.2005.8.241
    Rose, T., Nam, C. S., & Chen, K. B. (2018). Immersion of virtual reality for rehabilitation-Review. Applied ergonomics, 69, 153-161. https://doi.org/10.1016/j.apergo.2018.01.009
    Royce, W. (1970). Managing the development of large systems: Concepts and techniques. 9th International Conference on Software Engineering. ACM,
    Ryan, R. M. (1982). Control and information in the intrapersonal sphere: An extension of cognitive evaluation theory. Journal of personality and social psychology, 43(3), 450. https://doi.org/10.1037/0022-3514.43.3.450
    Sacco, R. L., Kasner, S. E., Broderick, J. P., Caplan, L. R., Connors, J., Culebras, A., Elkind, M. S., George, M. G., Hamdan, A. D., & Higashida, R. T. (2013). An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 44(7), 2064-2089. https://doi.org/10.1161/STR.0b013e318296aeca
    Scheffler, R. M., & Arnold, D. R. (2019). Projecting shortages and surpluses of doctors and nurses in the OECD: What looms ahead. Health Economics, Policy and Law, 14(2), 274-290. https://doi.org/10.1017/S174413311700055X
    Schultheis, M. T., & Rizzo, A. A. (2001). The application of virtual reality technology in rehabilitation. Rehabilitation psychology, 46(3), 296. https://doi.org/10.1037/0090-5550.46.3.296
    Schwaber, K., & Beedle, M. (2001). Agile software development with Scrum. Prentice Hall PTR.
    Shah, S. G. S., & Robinson, I. (2007). Benefits of and barriers to involving users in medical device technology development and evaluation. International journal of technology assessment in health care, 23(1), 131-137. https://doi.org/https://doi.org/10.1017/S0266462307051677
    Shostack, G. L. (1984). Designing services that deliver. Harvard Business Beview, 62(1), 133-139.
    Singh, S., Singh, M., & Kesarwani, P. (2023). Application of mandala art for suitability on home furnishing products. HOME SCIENCE, 35(1), 109. https://doi.org/10.1186/s12913-020-5053-4
    Small, S. L., Hlustik, P., Noll, D., Genovese, C., & Solodkin, A. (2002). Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke. Brain, 125(7), 1544-1557. https://doi.org/10.1093/brain/awf148
    Subramanian, S. K., Lourenço, C. B., Chilingaryan, G., Sveistrup, H., & Levin, M. F. (2013). Arm motor recovery using a virtual reality intervention in chronic stroke: Randomized control trial. Neurorehabilitation and neural repair, 27(1), 13-23. https://doi.org/10.1177/1545968312449695
    Subramanian, S. K., Massie, C. L., Malcolm, M. P., & Levin, M. F. (2010). Does provision of extrinsic feedback result in improved motor learning in the upper limb poststroke? A systematic review of the evidence. Neurorehabilitation and neural repair, 24(2), 113-124. https://doi.org/10.1177/1545968309349941
    Takeuchi, N., & Izumi, S.-I. (2013). Rehabilitation with poststroke motor recovery: A review with a focus on neural plasticity. Stroke research and treatment, 2013(1), 128641. https://doi.org/10.1155/2012/128196
    Thieme, H., Mehrholz, J., Pohl, M., Behrens, J., & Dohle, C. (2013). Mirror therapy for improving motor function after stroke. Stroke, 44(1), e1-e2. https://doi.org/10.1161/STROKEAHA.112.673087
    Thieme, H., Morkisch, N., Mehrholz, J., Pohl, M., Behrens, J., Borgetto, B., & Dohle, C. (2019). Mirror therapy for improving motor function after stroke: Update of a Cochrane review. Stroke, 50(2), e26-e27. https://doi.org/10.1161/STROKEAHA.118.023092
    Tieri, G., Morone, G., Paolucci, S., & Iosa, M. (2018). Virtual reality in cognitive and motor rehabilitation: Facts, fiction and fallacies. Expert review of medical devices, 15(2), 107-117. https://doi.org/10.1080/17434440.2018.1425613
    Todhunter-Brown, A., Baer, G., Campbell, P., Choo, P. L., Forster, A., Morris, J., Pomeroy, V. M., & Langhorne, P. (2014). Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database of Systematic Reviews(4). https://doi.org/10.1002/14651858.CD001920.pub3
    Tseng, K. C. (2013). An IPDD approach for systematic innovation of products, processes, and services: A case study on the development of a healthcare management system. Proceedings of the 5th IASDR World Conference on Design Research,
    Tseng, K. C. (2023). Innovative product design & development.
    Tseng, K. C., & Abdalla, H. (2006). A novel approach to collaborative product design and development environment. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220(12), 1997-2020. https://doi.org/10.1243/09544054JEM485
    Tyson, S., & Turner, G. (2000). Discharge and follow-up for people with stroke: What happens and why. Clinical rehabilitation, 14(4), 381-392. https://doi.org/10.1191/0269215500cr331oa
    Veerbeek, J. M., Langbroek-Amersfoort, A. C., Van Wegen, E. E., Meskers, C. G., & Kwakkel, G. (2017). Effects of robot-assisted therapy for the upper limb after stroke: A systematic review and meta-analysis. Neurorehabilitation and neural repair, 31(2), 107-121. https://doi.org/10.1177/1545968316666957
    Veerbeek, J. M., van Wegen, E., van Peppen, R., Van der Wees, P. J., Hendriks, E., Rietberg, M., & Kwakkel, G. (2014). What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PloS one, 9(2), e87987. https://doi.org/10.1371/journal.pone.0087987
    Wade, E., & Winstein, C. J. (2011). Virtual reality and robotics for stroke rehabilitation: Where do we go from here? Topics in stroke rehabilitation, 18(6), 685-700. https://doi.org/10.1310/tsr1806-685
    Wagner, T. H., Lo, A. C., Peduzzi, P., Bravata, D. M., Huang, G. D., Krebs, H. I., Ringer, R. J., Federman, D. G., Richards, L. G., & Haselkorn, J. K. (2011). An economic analysis of robot-assisted therapy for long-term upper-limb impairment after stroke. Stroke, 42(9), 2630-2632. https://doi.org/10.1056/NEJMoa0911341
    Wang, L., Chen, J.-L., Wong, A. M., Liang, K.-C., & Tseng, K. C. (2022). Game-based virtual reality system for upper limb rehabilitation after stroke in a clinical environment: Systematic review and meta-analysis. Games for Health Journal, 11(5), 277-297.
    Weiss, P. L., Rand, D., Katz, N., & Kizony, R. (2004). Video capture virtual reality as a flexible and effective rehabilitation tool. Journal of neuroengineering and rehabilitation, 1, 1-12. https://doi.org/10.1186/1743-0003-1-12
    WHO. (2011). World Report on Disability 2011. https://www.who.int/disabilities/world_report/2011/en/
    Wu, C.-Y., Huang, P.-C., Chen, Y.-T., Lin, K.-C., & Yang, H.-W. (2013). Effects of mirror therapy on motor and sensory recovery in chronic stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation, 94(6), 1023-1030. https://doi.org/10.1016/j.apmr.2013.02.007
    You, S. H., Jang, S. H., Kim, Y.-H., Hallett, M., Ahn, S. H., Kwon, Y.-H., Kim, J. H., & Lee, M. Y. (2005). Virtual reality–induced cortical reorganization and associated locomotor recovery in chronic stroke: An experimenter-blind randomized study. Stroke, 36(6), 1166-1171. https://doi.org/10.1161/01.STR.0000166513.71770.32
    Zeithaml, V. A., Bitner, M. J., & Gremler, D. D. (2018). Services marketing: Integrating customer focus across the firm. McGraw-Hill.

    無法下載圖示 本全文未授權公開
    QR CODE