簡易檢索 / 詳目顯示

研究生: 葉芳均
Yeh, Fang-Chun
論文名稱: 石墨烯薄片之環保製備技術開發
Development of an eco-friendly technology for producing graphene flakes
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 145
中文關鍵詞: 寡層石墨烯熱震超音波震盪超臨界流體
英文關鍵詞: few-layer graphene, thermal-shock, sonication, supercritical fluid
DOI URL: https://doi.org/10.6345/NTNU202202274
論文種類: 學術論文
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一個新穎且綠能的方法,使用三種不同製程路徑,希望能夠縮短製程時間並量產石墨烯薄片,環保與量產是本研究的核心目標,過程中完全不使用任何的有機溶液,並且在製程之中不會衍生影響人體、環境汙染的廢液,不僅可降低石墨烯的生產成本,也可達成量產品質良好石墨烯薄片的目標。
    本研究利用CO2超臨界流體處理技術來輔助生產石墨烯薄片,並加入碳酸氫鈉當作插層材料,藉由CO2超臨界流體的高溫及高壓,在反應時間超臨界流體的二氧化碳分子與酸氫鈉會插層在石墨層間,因為超臨界流體有如氣體幾乎無表面張力,故很容易滲入到多孔性材料石墨中,因此可以大幅縮短製程時間。當到達反應時間,超臨界流體已充分插層,藉由快速洩壓,使CO2流體汽化,瞬間產生的壓力讓石墨層中二氧化碳體積膨脹,將石墨層與層瞬間剝離,產生大量石墨烯薄片。以二氧化碳為流體,處理過後經釋壓成為氣體,過程中就無殘留的疑慮且它不會留在最終產物中。之後藉由熱震製程所產生的CO2再一次剝離石墨烯薄片,接下來以超音波破碎進行更進一步機械剝離處理,即獲得寡層石墨烯。
    以離心篩選溶液,分別檢測三個路徑之3000 rpm樣品以及沉澱物樣品,以拉曼光譜儀檢測發現ID/IG比值越來越小,場發射穿透式電子顯發現剝離石墨烯薄片是相當透明且薄的,平滑沒有皺褶,而由原子力顯微鏡檢測,第一路徑可得70 %之10層以下石墨烯薄片,第二路徑可得75 %之10層以下石墨烯薄片,而第三路徑可得85 %之10層以下石墨烯薄片,證實CO2超臨界流體剝離方法確實具有將原始石墨剝離,並獲得寡層石墨烯之成效。

    In this research, we represent a novel a novel and environment friendly method to produce the graphene flakes within a short time by using three separate processes of preparation. Eco-friendly and yield is the core of this research, without using any organic solvents, which could cause toxication, pollution and raise the production costs.
    In this research, CO2 super critical fluid would be used to assist the process including NaHCO3 as the intercalation material. By using super critical fluid, with high temperature and high pressure, the CO2 molecule and NaHCO3 intercalate into the graphite. Because the super critical fluid is practically non-surface-tension, it could easily permeate into the porous graphite in order to shorten the processing time. When the reaction time is reached, the super critical fluid is fully intercalated and vaporized the CO2 fluid by rapid depression. The sudden pressure make the volume of CO2 expanse in the interlayer, makes the interlayer exfoliate the graphite layer for large amounts of graphene. By using thermal shock method, the CO2 exfoliated the graphene flakes again, then use ultra sonication exfoliation for further exfoliation to obtain few layer graphere.
    Use centrifugation to select the solutions and test three separate processes with the samples of 3000rpm and its residuals by Raman spectra and discover the ID/IG ratio is lower than the previous process. Field emission scanning electron microscope discover that the exfoliated graphene layer is transparent and thin, smooth without winkles. The atomic force microscope detect that the first process can obtain 85% of graphene under ten layers, the second process can obtain 75% of graphene under ten layers, the third process can obtain 70% of graphene under ten layers. It determines that the supercritical fluid exfoliation can be a reliable method to obtain few layers graphene.

    摘要 III Abstract IV 總目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 奈米碳材之概述 4 1.3石墨烯特性與應用領域 6 1.4 超臨界流體 10 1.5 研究動機與目的 12 1.6 論文架構 14 第二章 文獻回顧與理論探討 15 2.1 石墨烯常見製備技術 15 2.2 微機械剝離法 18 2.3 碳化矽表面磊晶法 20 2.4 化學氣相沉積法 23 2.5 化學剝離法 25 2.6 氧化石墨剝離法 27 2.7 電化學剝離法 32 2.8 超臨界流體剝離法 38 2.9 寡層石墨烯剝離之環保製程技術開發 51 第三章 實驗設計與規劃 57 3.1 實驗設計 58 3.2 實驗細部規劃 63 3.3 實驗設備與材料 72 第四章 實驗結果與討論 84 4.1 CO2超臨界流體剝離石墨烯薄片之參數探討 84 4.2 CO2超臨界流體輔助石墨插層之參數探討 110 4.2.1石墨潤濕性與碳酸氫鈉插層處理 110 4.2.2 真空處理 111 4.3熱震剝離處理 114 4.4超音波震盪剝離處理 115 4.4.1 石墨分散性處理 115 4.4.2 酸鹼中和去除殘留物 115 4.4.3 超音波破碎剝離處理 117 4.4.4 離心處理 118 第五章 結論與未來展望 135 5.1結論 135 5.2未來展望 136 參考文獻 137 表 目 錄 Table 1-1 Materials properties of graphene. 8 Table 2-1 The thickness lateral size of GNs prepared under various processing condition. 43 Table 3-1 Experimental chemical reagent used in this study. 72 Table 3-2 Experimental precision instruments used in this study. 73 圖 目 錄 Figure 1-1 Moore’s Law 2 Figure 1-2 A shematic showing the conventional methods commonly used for the synthesis of Graphene along with their key features, and the current and future applications 3 Figure 1-3 Graphene is a 2D building material for carbon materials of all other dimensionalities. It can be wrapped up into 0D buckyballs, rolled into 1D nanotubes or stacked into 3D graphite 5 Figure 1-4 Applications of graphene in various fields 8 Figure 1-5 There are several methods of mass-production of graphene, which allow a wide choice in terms of size, quality and price for any particular application 9 Figure 2-1 Schematic illustration of the main graphene production techniques. (a) Micromechanical cleavage. (b) Anodic bonding. (c) Photoexfoliation. (d) Liquid phase exfoliation. (e) Growth on SiC. Gold and grey spheres represent Si and C atoms, respectively. At elevated C, Si atoms evaporate (arrows), leaving a carbon-rich surface that forms graphene sheets. (f) Segregation/precipitation from carbon containing metal substrate. (g) Chemical vapor deposition. (h) Molecular beam epitaxy. (i) Chemical synthesis using benzene as building block 17 Figure 2-2 (a) Attached HOPG graphite flakes with tape. (b) Folded the tape several times to peel off HOPG graphite flakes. (c) Carefully laid the HOPG graphite samples under the tape on the substrate. (d) The samples of HOPG graphite flakes had been transferred on the substrate. (e) Graphene samples with different layers under the optical microscope. (f) From one-single layer to more than 10 layers graphene samples are there on SiO2/Si substrate 19 Figure 2-3 Schematic representation of bottom-up growth mechanism of graphene on 6H-SiC (0001): (a) Sublimation of Si atoms via SiC atomic steps and through the interfacial carbon layer. (b) First graphene layers growth. (c) Additional sublimation of Si atoms through graphene first layer structural defects. (d) Defect-assisted second layer growth 21 Figure 2-4 (a) STM image of a transition from the interface to the graphene monolayer; (b) STM images of epitaxial graphene showing the continuous top layer between monolayer and bilayer graphene; (c) point defect of graphene monolayer, one of the defects is indicated by a white arrow; and (d) high atomically resolved STM image (3 nm × 3 nm) of graphene bilayer. 22 Figure 2-5 Schematic of a common setup for chemical vapor deposition of graphene 24 Figure 2-6 (A) SEM image of graphene on a copper foil with a growth time of 30 min. (B) High-resolution SEM image showing a Cu grain boundary and steps, two- and three-layer graphene flakes, and graphene wrinkles. Inset in (B) shows TEM images of folded graphene edges. 1L, one layer; 2L, two layers. (C and D) Graphene films transferred onto a SiO2/Si substrate and a glass plate, respectively 24 Figure 2-7 Schematic representation of the liquid-phase exfoliation process of graphite in the absence (top-right) and presence (bottom-right) of surfactant molecules 26 Figure 2-8 Schematic of experimental procedures used to produce GSs via high temperature and high vacuum annealing 30 Figure 2-9 Graphene oxides can be prepared by various methods using graphite as the starting material. An oxidative treatment is initially performed to generate graphite oxide. This is followed by: i) exfoliation by ultrasonication generating GO, ii) chemical reduction of GO by using NaBH4 to produce CRGO, iii) electrochemical reduction of GO producing ERGO or iv) thermal reduction/exfoliation of graphite oxide to produce TRGO 31 Figure 2-10 Experimental set-up diagram (left) and the exfoliation of the graphite anode (right) 34 Figure 2-11 (a) TEM image. (b) Histogram of the graphene thickness distribution of GNSC8P obtained in ([C8mim]+[PF6]-) and water (volume ratio 1:1) as electrolyte and at 15 V applied potential 34 Figure 2-12 Schematic illustration and photo for electrochemical exfoliation of graphite. 35 Figure 2-13 (a) Typical AFM image for an electrochemically exfoliated graphene thin sheet cast on a SiO2 substrate. (b) Statistical thickness analysis for the graphene sheet ensemble (randomly selected 58 sheets were measured by AFM) 36 Figure 2-14 Production of graphene by shear mixing. (a) A Silverson model L5M high-shear mixer with mixing head in a 5L beaker of graphene dispersion. (b) Histogram of nanosheet thickness as measured by AFM on a surfactant exfoliated sample. The presence of monolayers was confirmed by Raman characterisation (inset) 37 Figure 2-15 (a) Raman spectra (NMP exfoliated samples) measured on thin films. (b) Histogram of nanosheet thickness as measured by AFM on a surfactant exfoliated sample 37 Figure 2-16 Schematic diagram of the supercritical CO2 processing system 39 Figure 2-17 (a) Top-view and (b) cross-section FE-SEM images of untreated graphite particles. (c) Top-view TEM image of a small flake of the graphite particle 39 Figure 2-18 TEM image of exfoliated few-layer graphene 40 Figure 2-19 AFM scan of few-layer graphene: (a) pseudo-3D representation of a 1.5 μm x 1.5 μm scan of an individual graphene sheet. (b) 3 μm x 3 μm AFM topography image. (c) Cross-section through the sheet shown in (b) (position indicated by the black line) exhibiting a height of 3.8 nm 40 Figure 2-20 Exfoliation mechanism of graphite through the scCO2 process 42 Figure 2-21 (a) SEM images of starting graphite material, (b) enlarged view of (a), (c) and (d) SEM images of the exfoliated GNs 43 Figure 2-22 (a) and (b) AFM topography images and height profiles of the exfoliated GNs 44 Figure 2-23 Number of layers of the GNs from (a) the first scCO2 process and (b) the repeated scCO2 process 44 Figure 2-24 The schematic for fabricating few-layer graphene (FG) and single-layer graphene by exfoliation of expandable graphite (EG) in supercritical N,Ndimethylformamide (DMF). It includes two steps: (1) producing few-layer graphene by supercritical DMF from expandable graphite; (2) producing monolayer graphene by supercritical DMF from few-layer graphene 46 Figure 2-25 SEM images of (a) EG, scale bar = 200 μm; (b) exfoliated EG, scale bar = 50 μm; (c) exfoliated FG, scale bar = 20 μm 44 Figure 2-26 Typical tapping mode AFM images of (a) few-layer graphene sheets 2 μm x 2 μm, (b) few-layer graphene sheets 0.8 μm x 0.8 μm, (c) monolayer graphene sheets 3 μm x 3 μm, and (d) monolayer graphene sheets 1.25 μm x 1.25 μm deposited on the mica substrate from dispersion, corresponding height cross-sectional profile. The average thickness of few-layer graphene is about 3 nm and monolayer graphene is about 1.2 nm 48 Figure 2-27 TEM image of exfoliated FG shows the existence of monolayer graphene, scale bar = 200 nm, and the inset shows the selected area electron diffraction patterns 49 Figure 2-28 XRD patterns of EG and FG 49 Figure 2-29 Raman spectra of (a) EG; (b) FG; (c) exfoliated FG. (Inset) The enlarged 2D peak 50 Figure 2-30 TEM images of (a) natural graphite (above 100 layers). (b, c) Natural graphite was stirring with surfactant MA solution, and intercalated by MA/NaHCO3 solution. After undergoing shade-drying treatment and then thermal-shock treatment, obtained (b) 24 layers and (c) left: 11 layers and above: 18 layers graphite 53 Figure 2-31 Raman spectroscopy of (a) natural graphite (ID/IG: 0.1845), and (b) thermal-shock treatment at 700 °C to 100 °C five times (ID/IG: 0.1926) 54 Figure 2-32 Raman spectroscopy of (a) precipitate centrifuged at 8500 rpm (ID/IG: 0.3936), and (b) precipitate centrifuged at 3000 rpm (ID/IG: 0.1753) (c) residual (ID/IG: 0.2605) 55 Figure 2-33 AFM image and height profile of residual (Scale: 50 um) 56 Figure 2-34 Thickness histogram of residual (Scale: 50 um) 56 Figure 3-1 Process (I) : preparation flow of graphene flakes through a green process. 60 Figure 3-2 Schematic diagram of the supercritical CO2 processing system. 61 Figure 3-3 Schematic diagram of the supercritical CO2 processing system. 61 Figure 3-4 Process (II) : preparation flow of graphene flakes through a green process. 62 Figure 3-5 Process (III) : preparation flow of graphene flakes through a green process. 62 Figure 3-6 Research flow chart of a green process for producing graphene flakes. . 69 Figure 3-7 Digital photo of experimental setup for rapidly heating and cooling process.. . 70 Figure 3-8 Digital photo of experimental setup for mechanical exfoliation treatment... . 70 Figure 3-9 Post treatment for removing surfactant and obtaining the graphene... . 71 Figure 3-10 Experimental facilities used in this research. . 74 Figure 3-11 Detection equipment for this study. 83 Figure 3-12 Principle of four point probe. 82 Figure 4-1 Bubble of degassing treatment. 89 Figure 4-2 SEM images of raw natural graphite. 90 Figure 4-3 SEM images of graphene powder treated under 50 oC and different pressure: (a) supernatant and (b) residuals centrifuged at 3000 rpm for 2000 psi; (c) supernatant and (d) residuals centrifuged at 3000 rpm for 3000 psi; (e) supernatant and (f) residuals centrifuged at 3000 rpm for 4000 psi. 91 Figure 4-4 AFM images and height profiles and number of layers of graphene powder treated under 50 oC and different pressure: (a)(b)(c) supernatant and (d)(e)(f) residuals centrifuged at 3000 rpm for 2000 psi; (g)(h)(i) supernatant and (j)(k)(l) residuals centrifuged at 3000 rpm for 3000 psi; (m)(n)(o) supernatant and (p)(q)(r) residuals centrifuged at 3000 rpm for 4000 psi. 97 Figure 4-5 SEM images of graphene powder treated under 2000 psi and different temperature: (a) supernatant and (b) residuals centrifuged at 3000 rpm for 45 oC; (c) supernatant and (d) residuals centrifuged at 3000 rpm for 50 oC; (e) supernatant and (f) residuals centrifuged at 3000 rpm for 55 oC. 98 Figure 4-6 AFM images and height profiles and number of layers of graphene powder treated under 2000 psi and different temperature: (a)(b)(c) supernatant and (d)(e)(f) residuals centrifuged at 3000 rpm for 45 oC; (g)(h)(i) supernatant and (j)(k)(l) residuals centrifuged at 3000 rpm for 50 oC; (m)(n)(o) supernatant and (p)(q)(r) residuals centrifuged at 3000 rpm for 55 oC. 104 Figure 4-7 TEM images and their corresponding electron diffraction of graphene exfoliated under 2000 psi, 50 °C, and (a)(b) supernatant and (c)(d) residuals centrifuged at 3000 rpm. 105 Figure 4-8 XRD patterns between graphite and graphene exfoliated under 2000 psi, 50 °C, and centrifuged residuals at 3000 rpm. 106 Figure 4-9 X-ray photoelectron spectroscopy of (a) natural graphite, graphene exfoliated under 2000 psi, 50 °C, and (b) supernatant and (c) residuals centrifuged at 3000 rpm. 107 Figure 4-10 Fourier transform infrared spectroscopy of (a) graphite, graphene exfoliated under 2000 psi, 50 °C, and (b) supernatant and (c) residuals centrifuged at 3000 rpm. 108 Figure 4-11 Roman spectroscopy of (a) graphite, graphene exfoliated under 2000 psi, 50 °C, and (b) supernatant and (c) residuals centrifuged at 3000 rpm. 109 Figure 4-12 Digital images of 1 g powder of (a) raw natural graphite and graphite powder treated under 2000 psi and 50 °C for (b) 1 h (c) 2 h, and (d) 3 h of NaHCO3 intercalation. 112 Figure 4-13 SEM images of graphite powder treated under 2000 psi and 50 °C for (a) 1 h (b) 2 h, and (c) 3 h of NaHCO3 intercalation. 113 Figure 4-14 SEM images of graphene powder treated under 2000 psi and 50 °C for 1 h of NaHCO3 intercalation, and proceed acid base neutralization of DL-Tartaric acid anhydrous; (a) supernatant and (b) residuals centrifuged at 3000 rpm. 119 Figure 4-15 AFM images and height profiles and number of layers of graphene powder treated under 2000 psi and 50 °C for 1 h of NaHCO3 intercalation, and proceed acid base neutralization of DL-Tartaric acid anhydrous; (a)(b)(c) supernatant and (d)(e)(f) residuals centrifuged at 3000 rpm.. 121 Figure 4-16 TEM images and their corresponding electron diffraction of graphene exfoliated under 2000 psi, 50°C for 1 h of NaHCO3intercalation,and proceed acid base neutralization of DL-Tartaric acid anhydrous; (a)(b) supernatant and (c)(d) residuals centrifuged at 3000 rpm. 122 Figure 4-17 XRD patterns between graphite and graphene exfoliated 2000 psi, 50 °C for 1 h of NaHCO3 intercalation, and proceed acid base neutralization of DL-Tartaric acid anhydrous, and centrifuged residuals at 3000 rpm. 123 Figure 4-18 Fourier transform infrared spectroscopy of (a) graphite, graphene exfoliated under 2000 psi, 50 °C for 1 h of NaHCO3 intercalation, and proceed acid base neutralization of DL-Tartaric acid anhydrous; (b) supernatant and (c) residuals centrifuged at 3000 rpm. 124 Figure 4-19 Raman spectroscopy of (a) graphite, graphene exfoliated under 2000 psi, 50 °C for 1 h of NaHCO3 intercalation, and proceed acid base neutralization of DL-Tartaric acid anhydrous; (b) supernatant and (c) residuals centrifuged at 3000 rpm. 125 Figure 4-20 SEM images of graphene powder treated under 2000 psi and 50 °C for 1 h of NaHCO3 intercalation, after thermal-shock treatment, and proceed acid base neutralization of DL-Tartaric acid anhydrous; (a) supernatant and (b) residuals centrifuged at 3000 rpm. 128 Figure 4-21 AFM images and height profiles and number of layers of graphene powder treated under 2000 psi and 50 °C for 1 h of NaHCO3 intercalation, after thermal-shock treatment, and proceed acid base neutralization of DL-Tartaric acid anhydrous; (a)(b)(c) supernatant and (d)(e)(f) residuals centrifuged at 3000 rpm. 130 Figure 4-22 TEM images and their corresponding electron diffraction of graphene exfoliated under 2000 psi, 50 °C for 1 h of NaHCO3 intercalation, after thermal-shock treatment, and proceed acid base neutralization of DL-Tartaric acid anhydrous; (a)(b) supernatant and (c)(d) residuals centrifuged at 3000 rpm. 131 Figure 4-23 XRD patterns between graphite and graphene exfoliated 2000 psi, 50 °C for 1 h of NaHCO3 intercalation, after thermal-shock treatment, and proceed acid base neutralization of DL-Tartaric acid anhydrous, and centrifuged residuals at 3000 rpm. 132 Figure 4-24 Fourier transform infrared spectroscopy of (a) graphite, graphene exfoliated under 2000 psi, 50 °C for 1 h of NaHCO3 intercalation, after thermal-shock treatment, and proceed acid base neutralization of DL-Tartaric acid anhydrous; (b) supernatant and (c) residuals centrifuged at 3000 rpm.. . 133 Figure 4-25 Raman spectroscopy of (a) graphite, graphene exfoliated under 2000 psi, 50 °C for 1 h of NaHCO3 intercalation, after thermal-shock treatment, and proceed acid base neutralization of DL-Tartaric acid anhydrous; (b) supernatant and (c) residuals centrifuged at 3000 rpm. 134

    1. Gordon E. Moore, “Cramming more components onto integrated circuits”, Electrons, Vol. 38, No. 8, pp. 114-117, 1965.
    2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science,Vol. 306, pp. 666-669, 2004.
    3. A. K. Geim, K. S. Novoselov, “The rise of graphene”, Nature Materials, Vol. 6, pp. 183-191,2007.
    4. C. N. R. Rao, K. S. Subrahmanyam, H. S. S. Ramakrishna Matte, A. Govindaraj,“Graphene: synthesis, functionalization and properties”, Modern Physics Letters B, Vol. 25, pp. 427-451, 2011.
    5. K. P. Loh, Q. L. Bao, P. K. Ang, J .X. Yang, “The chemistry of graphene, Jourmal of Materials Chemistry”, Vol. 20, pp. 2277-2289,2010.
    6. http://www.nanowerk.com/spotlight/spotid=25744.php
    7. A. K. Geim, A. H. MacDonald, “Graphene: exploring carbon flatland”, Physics Today, Vol. 60, pp. 35-41, 2007.
    8. C. Liu, G. Hu, H. Gao, H. Gao, “Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N,N-dimethylformamide”, Journal of Supercritical Fluids, Vol. 63, pp. 99-104, 2012.
    9. Y. Zhang, Y-W Tan, H. L. Stormer, P. Kim, “Experimental observation of the quantum Hall effect and Berry's phase in graphene”,Nature, Vol. 438, pp. 201-204, 2005.
    10. X. Du, I. Skachko, F. Duerr, A. Luican, E. Y. Andrei,“Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene,”Nature, Vol. 462, pp. 192-195, 2009.
    11. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene”, Nano Letters, Vol. 8, pp. 902-907, 2008.
    12. X. S. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo, R. S. Ruoff, “Graphene films with large domain size by a two-step chemical vapor deposition process”, Nano Lett, Vol. 10 (11), pp. 4328-4334, 2010.
    13. C. Y. Su. “Graphene: The applications in optical electronics and thermal management”, SumKen, 2013.
    14. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim,“Fine Structure Constant Defines Visual Transparency of Graphene”, Science, Vol. 320, pp. 1308, 2008.
    15. J. H. Chen, C. Jang, S. Xiao, M. Ishigami, M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2”, Nature Nanotechnology, Vol. 3, pp. 206-209, 2008.
    16. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, A. K. Geim,“Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer”, Physical Review Letters, Vol. 100, pp. 016602, 2008.
    17. http://www.grapheneconf.com/ARCHIVE12/Files/Presentations/Graphene2012_Hong_GF.pdf
    18. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene, Reviews Modern Physics”, Vol. 81, pp.109–162, 2009.
    19. M. I. Katsnelson, K. S. Novoselov and A. K. Geim, “Chiral tunnelling and the Klein paradox in graphene”, Nature Physics, Vol. 2, pp. 620–625, 2006.
    20. K.S. Novoselov, Z. Jiang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, “Room-temperature quantum hall effect in graphene”, Science,Vol. 315, pp. 1379, 2007.
    21. C. R. Rozman, M. Larisika, C. Nowak, W. Knoll, “Graphene-based liquid-gated field effect transistor for biosensing: Theory and experiments”,BiosensBioelectron, Vol. 70, pp. 21–27, 2015.
    22. B. Lobato, V. Vretenar, P. Kotrusz, M. Hulman, T.A. Centeno, “Reduced graphite oxide in supercapacitor electrodes”, Journal of Colloid and Interface Science, Vol. 446, pp. 203-207, 2015
    23. S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, “Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits”, Applied Physics Letters, Vol. 92, pp. 151911, 2008.

    24. L.H. Hess, M. Jansen, V. Maybeck, M.V. Hauf, M. Seifert, M. Stutzmann, I.D. Sharp, A. Offenhausser, J. A. Garrido, “Graphene transistor arrays for recording action potentials from electrogenic cells”, Advanced Materials, Vol. 23, pp. 5045-5049, 2011.
    25. M. Pumera,”Graphene-based nanomaterials for energy storage”, Energy Environmental Science, Vol. 4, pp. 668-674, 2011.
    26. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K.S. Novoselov, “Detection of individual gas molecules adsorbed on graphene”, Nature Materials, Vol. 6, pp. 652-655, 2007.
    27. Y. Wang, J. Zhu, “One-step electroplating porous graphene oxide electrodes of supercapacitors for ultrahigh capacitance and energy density”, Nanotechnology, Vol. 26, pp. 055401, 2015.
    28. S. Kumar, S. Kaushik, R. Pratap, S. Raghavan, “Graphene on paper: a simple, low-cost chemical sensing platform”, ACS Applied Materials Interfaces, Vol. 7, pp.2189-2194, 2015.
    29. 蘇清原,“石墨烯量產技術與產業應用”,光連雙月刊,61-71頁,2013年11月,No. 108。
    30. S. Karamat, S. Sonuşen, Ü. Çelik, Y. Uysallı, E. Özgönül, A. Oral,“Synthesis of few layer single crystal graphene grains on platinum by chemical vapourdeposition”,Progress in Natural Science:Materials International, Vol. 25, pp. 291-299, 2015.
    31. K. S. Novoselov, V. I. Fal′ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, “A roadmap for graphene”, Nature, Vol. 490, pp. 192–200, 2012.
    32. 楊顯整,“超臨界綠色技術之概述”,綠基會通訊,7-11頁,98年7月。
    33. 談駿嵩,“超臨界流體的應用”,科學發展,12-17頁,2002年11月,359期.
    34. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. G. Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite”, Nature Nanotechnology, Vol. 3, pp. 563-568, 2008.
    35. U. Khan, A. O'Neill, M. Lotya, S. De, J. N. Coleman, “High-concentration solvent exfoliation of graphene”, Small, Vol. 6, pp. 764-871, 2010.

    36. K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O'Neill, C. Boland, M. Lotya, O. M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S. E. O'Brien, E. K. McGuire, B. M. Sanchez, G. S. Duesberg, N. McEvoy, T. J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, J. N. Coleman, “Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids”, Nature materials, Vol. 13, pp. 624-630, 2014.
    37. W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, G. Chen, “Preparation of graphene by exfoliation of graphite using wet ball milling”, Journal of Materials Chemistry, Vol. 20, pp. 5817-5819, 2010.
    38. V. León, M. Quintana, M. A. Herrero, J. L. G. Fierro, A. de la Hoz, M. Prato,E.Vázquez, “Few- layer graphenes from ball-milling of graphite with melamine”, Chemical Communication, Vol. 47, pp. 10936-10938, 2011.
    39. W. Zhao, F. Wu, H. Wu, G. Chen, “Preparation of colloidal dispersions of graphene sheets in organic solvents by using ball milling,” Journal of Nanomaterials, Vol. 2010, pp. 1-5, 2010.
    40. Nen-Wen Pu, Chung-An Wang, Yu Sung, Yih-Ming Liu, Ming-Der Ger, “Production of few-layer graphene by supercritical CO2 exfoliation of graphite” , Materials Letters, Vol. 63, pp. 1987-1989, 2009.
    41. D. Rangappa, K. Sone, M. Wang, U. K. Gautam, D. Golberg, H. Itoh, M. Ichihara, I. Honma, “Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation”, Chemistry-A European Journal, Vol. 16, pp. 6488-6494, 2010.
    42. D. M. Sun, C. Liu, W. C. Ren, H. M. Cheng, “A review of carbon nanotube- and graphene-based flexible thin-film transistors”, Small, Vol. 9, pp. 1188-1205, 2013.
    43. K. Wang, L. Zhang, “Synthesis of Ordered Mesoporous Carbon and Its Electrochemical Performances”, International Journal of Electrochemical Science, Vol. 8, pp. 2892-2897, 2013.
    44. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature, Vol. 457, pp. 706-710,2009.
    45. J. Wintterlin, M. L. Bocquet, “Graphene on metal surface”, Surface Science, Vol. 603, pp. 1841-1852, 2009.
    46. Y. Zhang, J. P. Small, M. E. S. Amori, P. Kim, “Electric field modulation of galvanomagnetic properties of mesoscopicgraphite”, Physical Review Letters, Vol. 94, pp. 176803–176806, 2005.
    47. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene”, Science, Vol. 312, pp. 1191-1196, 2006.
    48. S. Pei, J. Zhao, J. Du, W. Ren, H. M. Cheng, “Direct reduction of graphene oxide films into highly conductive and flexible grapheme films by hydrohalic acids", Carbon, Vol. 48, pp. 4466-4474,2010.
    49. J. Geng, L. Liu, S. B. Yang, S. C. Youn, D. W. Kim, J. S. Lee, J. K. Choi, H. T. Jung, “A simple approach for preparing transparent conductive graphene films using the controlled chemical reduction of exfoliated graphene oxide in an aqueous suspension”, The Journal of Physical Chemistry C, Vol. 114, pp. 14433-14440, 2010.
    50. L. Lai, L. Chen, D. Zhan, L. Sun, J .Liu, S. H. Lim, C. K. Poh, Z. Shen, J. Lin, “One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties”, Carbon, Vol. 49, pp. 3250-3257, 2011.
    51. F. Bonaccorso, A. Lombardo, T. Hasan1, Z. Sun, L. Colombo, A. C. Ferrari,“Production and processing of graphene and 2d crystals”, Materials Today, Vol. 15, pp. 564-589, 2012.
    52. http://www.scientificamerican.com/slideshow/diy-graphene-how-to-make-carbon-layers-with-sticky-tape/
    53. 劉偉仁、蘇清原、江偉宏、郭信良、吳定宇、陳貴賢、許新城、孫嘉良、許淑婷、沈駿、邱鈺蛟、蕭碩信、張峰碩,“石墨烯技術”,五南圖書出版股份有限公司,2015年11月。
    54. A. Ouerghi, M. Ridene , C. Mathieu, N. Gogneau, and R. Belkhou, “From nanographene to monolayer grapheme on 6H-SiC(0001) subtrate”, Applied physics letters, Vol. 102, pp. 253108, 2013.
    55. http://www.intechopen.com/books/advances-in-graphene-science/synthesis-and-biomedical-applications-of-graphene-present-and-future-trends.
    56. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science, Vol. 324, pp. 1312-1314, 2009.
    57. L. Gao, W. Ren, J. Zhao, L. P. Ma, Z. Chen, H. M. Cheng, “Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition”, Applied Physics Letters, Vol. 97, pp. 183109, 2010.
    58. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, S. S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators”, Applied Physics Letters, Vol. 93, pp. 113103, 2008.
    59. R. Addou, A. Dahal, P. Sutter, M. Batzill, “Monolayer graphene growth on Ni (111)by low temperature chemical vapor deposition”, Applied Physics Letters, Vol. 100, No. 021601, 2012.
    60. Y. Zhang, L. Gomez, F.N. Ishikawa, A. Madaria, K. Ryu, C. Wang, A. Badmaev, C.Zhou, “Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition”, The Journal of Physical Chemistry Letters, Vol. 1, pp. 3101-3107, 2010.
    61. H. Ueta, M. Saida, C. Nakai, Y. Yamada, M. Sasaki, S. Yamamoto, ”Highly oriented monolayer graphite formation on Pt (111) by a supersonic methane beam”, Surface Science, Vol. 560, pp. 183–190, 2014.
    62. P. Sutter, J. T. Sadowski, E. Sutter, ”Graphene on Pt (111): growth and substrate interaction”, Physical. Review. B , Vol. 80 , pp. 245411 , 2009.
    63. P. W. Sutter, J. I. Flege, E. A. Sutter, “Epitaxial graphene on ruthenium”, Nature Materials, Vol. 7, pp. 406–411, 2008.
    64. P. Yi, S. Dong-Xia, G. Hong-Jun, Formation of graphene on Ru (0001) surface, Chinese Physicals, Vol. 16, pp. 3151-3153, 2007.
    65. A. Ciesielski and P. Samorì, “Graphene via sonication assisted liquid-phase exfoliation”, Chemical Society Reviews, Vol. 43, pp. 381, 2014.
    66. Y. Hemandez , “Liquid phase production of grapheme by exfoliation of graphite in surfactant/water solutions”, Journal of the American chemical society, Vol. 131, pp. 3611-3620, 2009
    67. A. A. Green, M. C. Hersam, “Solution phase production of grapheme with controlled thickness via density differentiation”, Nano letters, Vol. 9, No. 12, pp. 4031-4036, 2009.

    68. H. M. Solomon, B. A. Burqess, G. L. Jr. Kennedy, R. E. Staples, “1-Methyl-2-pyrrolidone (NMP): reproductive and developmental toxicity study by inhalation in the rat”, Drug and Chemmical Toxicology, Vol. 18, pp. 271-293, 1995.
    69. M. H. Jin, “Facile physical route to highly crystalline graphene”, Functional materials, Vol. 21, pp. 3496-3501, 2011.
    70. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide”, Journal of the American society, Vol. 80, pp. 1339-1339, 1958.
    71. B. C. Brodie, “On the atomic weight of graphite”. Phil. Trans. R. Soc, London, Vol. 149, pp. 249-259, 1859.
    72. L. Staudenmaier, “Verfahren zur darstellung der graphitsäure”, Berichte deutshchen chemischen Gesellschaft, Vol. 31, Issue 2, pp. 1481-1487, 1898.
    73. Y. Si, E. T. Samulski, “Synthesis of water soluble graphene” Nano Letters , Vol. 8(6), pp. 1679–8, 2008.
    74. H. J. Shin, K. K Kim, A. Benayad, S. M. Yoon, H. K. Park , I. S. JunH. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, Y. H. Lee, “Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance”, Advanced Functional Materials, Vol. 19(12), pp. 1987–92, 2009.
    75. S. Stankovich, R. D. Piner, S. T. Nguyen, R. S. Ruoff, ”Synthesis and exfoliation of isocyanate-treated grapheneoxide nanoplatelets.”, Carbon, Vol. 44(15), pp. 3342–7, 2006.
    76. S. Stankovich , D. A. Dikin , R. D. Piner, K. A. Kohlhaas,A. Kleinhammes, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphiteoxide”, Carbon , Vol. 45, pp. 1558-1565, 2007.
    77. V. C. Tung , M. J. Allen , Y. Yang , R. B. Kaner. “High-throughput solution processing of large-scale graphene.”, Nature Nanotechnology, Vol. 4(1), pp. 25–9, 2009.
    78. S. Park, J. H. An, I. W. Jung, R. D. Piner, S. J. An, X. S. Li ,”Colloidalsuspensions of highly reduced graphene oxide in a widevariety of organic solvents.”, Nano Letters , Vol. 9(4), pp.1593–7, 2009.
    79. G. X. Wang, J. Yang, J. Park, X. L. Gou, B. Wang, H. Liu,” Facile synthesis and characterization of grapheme nanosheets.”, J Phys Chem C, Vol. 112(22), pp. 8192–5, 2008.

    80. Lucia Buglione , Elaine Lay KhimChng, Adriano Ambrosi, ZdeněkSofer, Martin Pumera, “Graphene materials preparation methods have dramatic influence upon their capacitance” , Electrochemistry Communications, vol. 14, pp. 5-8, 2012.
    81. X. Zhou, T. Shi, H. Zhou, “Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation”, Applied Surface Science, Vol. 258, pp. 6204, 2012.
    82. T. Lv, L. Pan, X. Liu, T. Lu, G. Zhu, Z. Sun, Journal of Alloys Compounds. , Vol. 509, No. 10086, 2011.
    83. H. Bai, C.Li, G. Shi, “Functional composite materials based on chemically converted graphene”, Advanced Materials, Vol. 45, pp. 1089-1115, 2011.
    84. G. Eda, G. Fanchini, M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material”,Nature nanotechnology, Vol. 3, pp. 270-274, 2008.
    85. H. C. Schniepp, J. L. Li , M. J. McAllister , H. Sai, M. Herrera-Alonso, D. H. Adamson ,” Functionalized single graphene sheets derived from splitting graphite oxide.”, J Phys Chem B ,Vol. 110, pp. 8535–9,2006.
    86. ZoraidaGonza´ lez, Cristina Botas, Patricia A´ lvarez, Silvia Rolda´n, Clara Blanco, Ricardo Santamarı´a, Marcos Granda, Rosa Mene´ndez, “Thermally reduced graphite oxide as positive electrode in Vanadium Redox Flow Batteries”, CARBON 50 , pp. 828 – 834, 2012.
    87. https://otl.sinica.edu.tw/index.php?t=9&group_id=26&article_id=1225
    88. K. Parvez, Z. S. Wu, R. Li, X. Liu, R. Graf, X. Feng*,K. Müllen, “Exfoliation of graphite into grapheme in aqueous solutions of inorganic salts”, Journal of the American chemical society, pp.1-25, 2014.
    89. N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, “One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite” , Advanced Functional Materials, Vo. 18, pp. 1518-1525, 2008.
    90. C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, L. J. Li, “High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation”, ACS Nano, Vol. 5 , pp. 2332–2339, 2010.
    91. H. S. Sim, T. A. Kim, K. H. Lee, M. Park, “Preparation of graphenenanosheets through repeated supercritical carbon dioxide process”, Materials Letters, Vol. 89, pp. 343–346, 2012.
    92. 羅詩涵、吳俊緯、楊啟榮,“寡層石墨烯剝離之環保製程技術開發”,國立臺灣師範大學,碩士,105。
    93. U. Khan, H.Porwal, A. O’Neil, K. Nawaz, P. May, J. N. Coleman, “Solvent-exfoliated grapheme at extremely high concentration”, Langmuir, vol. 27, pp. 9077-9081, 2011.
    94. S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked grapheme from surfactant-stabilized, oxide-free grapheme dispersions”, Small, Vol. 6, no. 3, pp. 458-464, 2010.
    95. Y. Gao, W. Shi, W. Wang, Y. Wang, Y. Zhao, Z. Lei, R. Miao, “Ultrasonic-Assisted Production of Graphene with High Yield in Supercritical CO2 and Its High Electrical Conductivity Film”, Industrial & Engineering Chemistry Research, Vol. 53, pp. 2839-2845, 2014.

    無法下載圖示 本全文未授權公開
    QR CODE