簡易檢索 / 詳目顯示

研究生: 許瑋琇
Wei-Hsiu Hsu
論文名稱: 鷹架式探究課程對高中生探究能力之影響
The effect of scaffolded scientific inquiry curriculum on students' scientific inquiry abilities
指導教授: 許瑛玿
Hsu, Ying-Shao
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 151
中文關鍵詞: 科學探究對科學探究的認識科學探究能力鷹架策略
英文關鍵詞: scientific inquiry, understanding about inquiry, scientific inquiry abilities, scaffolding
論文種類: 學術論文
相關次數: 點閱:198下載:35
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採混合設計研究法(mixed method),透過測驗、半結構式晤談、文件分析、影帶分析等質性與量化資料的交叉分析,期能了解高中生在明示鷹架、隱喻鷹架、漸褪鷹架三種鷹架式探究課程中其科學概念的進步情形、科學探究能力的成長、對科學探究認識的改變等表現。研究對象為台北縣某國立高中一年級三班學生,有效樣本共93人。研究結果顯示全體學生在經過鷹架式探究課程教學後,其科學概念、科學探究能力、對科學探究的認識均具有顯著進步(科學概念:t= 12.26*** , p<0.001; 對科學探究認識: Z=2.17*,p<0.05; 科學探究能力: t=10.76***, p<0.001)。而不同版本課程設計間的教學,對於促進學生在科學概念上的學習成效與在開放式科學探究能力試題中的表現並無顯著差異。但在拆鷹架(水庫單元)的實作評量中,發現漸褪鷹架的課程教學下的學生,其科學探究能力的表現優於其他兩種版本設計的學生。且當以區辨科學探究階段測驗與半結構式晤談診斷學生對科學探究認識的改變情形,結果發現在漸褪鷹架教學下的學生較其他兩種版本呈現較高層次對科學探究的認識。

    This study aimed to understand how scaffolded scientific inquiry curriculum design (Explicit version, Implicit version and Fading version) improved students’ scientific conceptions, scientific inquiry abilities and understanding about inquiry. The participants included 93 tenth graders from three classes at a senior high school in Taipei County. The researchers collected data from open-end questions, half structural interviews, and video clips of the focus group. The main results indicated that all the students had significant differences on scientific conceptions (t=12.26, p<0.001), scientific inquiry abilities (t=10.76, p<0.001) and understanding about inquiry (Z=2.17, p<0.05) through comparing their performances before and after the curriculum. Also, the fading version had better understanding about inquiry than the other two versions. However, no significant differences were found among the three versions(F=2.877, p>0.05)on students’ scientific conceptions and scientific inquiry abilities. From the analysis of focus groups’ video clips, we found that students in the Fading version performed better scientific inquiry abilities than the other two versions in no scaffolding lesson, Dam Lesson.

    第一章 緒論 第一節 研究動機與背景 1 第二節 研究目的 4 第三節 研究問題 5 第四節 研究的重要性 6 第五節 名詞釋義 7 第二章 文獻探討 第一節 科學探究 8 第二節 鷹架學習理論 21 第三節 鷹架學習理論應用至科學探究教學 26 第三章 研究方法 第一節 研究對象與情境 31 第二節 研究設計與流程 35 第三節 研究工具 39 第四節 資料分析 50 第五節 研究範圍與限制 65 第四章 研究結果與討論 第一節 科學概念的改變情形 66 第二節 科學探究能力的改變情形 69 第二節 對科學探究認識的改變情形 78 第四節 水庫單元中焦點組科學探究能力的改變情形 91 第五章 結論與建議 第一節 研究發現與結論 102 第二節 綜合討論 105 第三節 檢討與建議 109 參考文獻 112 附錄 附錄一:場記表(以單元一第二節課FV1為例) 120 附錄二:各單元活動內容 121 附錄三:學習單(以台灣地體構造活動一為例) 124 附錄四:測驗工具 134 附錄五 半結構式晤談單 149 附錄六 統計假設考驗與公式 150

    一、中文部分:
    王敏祝(2004)。以探究導向教學提昇國中學生學習成效之研究—以「光學」單元為例。國立彰化師範大學科學教育研究所碩士論文,彰化市。
    王靜如(2001):小學教師科學本質概念及教學之研究。科學教育學刊,9(2),197-217。
    毛松霖、張菊秀(1997)「探究式教學法」與「講述式教學法」對於國中學生地球科學「氣象」單元學習成效之比較。科學教育學刊,5(4),461-497。
    吳吉晃(2009)。融入合作情境的5E探究教學對國中學生學習成就與科學教室環境感受之行動研究--以壓力單元為例。國立彰化師範大學科學教育研究所碩士論文,彰化市。
    吳坤璋(2006)。科學探究能力與科學創造力理論模式之研究。國立高雄師範大學科學教育研究所博士論文,未出版,高雄市。
    谷瑞勉(譯)(1999)。L. E. Berk & A. Winsler著。鷹架兒童的學習─維高斯基與幼兒教育(Scaffolding children’s learning: Vygotsky and early childhood education)。台北:心理。
    張春興(2001)。教育心理學-三化取向的理論與實踐。台北:東華。
    教育部(2003)。國民中小學九年一貫課程綱要自然與生活科技學習領域。臺北市: 教育部。
    教育部(2008)。普通高級中學必修科目「基礎地球科學」課程綱要。普通高級中學課程綱要 (pp.267-273) 。2008年05月06日取自「普通高級中學課
    程基礎地球科學學科中心」,http://163.32.57.16/earth。
    陳定邦 (2003)。鷹架教學概念在成人學習歷程上應用之研究。國立台灣師範大學社會教育學研究所博士論文,未出版,台北市。
    陳毓凱、洪振方(2007)。兩種探究取向教學模式之分析與比較。科學教育學刊,305,4-19。
    許國忠、王靜如(2003)。科學本質教學初探。科學教育研究與發展期刊,33,15-29。
    黃淑卿(2006)。利用探究教學提昇國一學生科學探究能力之行動研究。國立彰化師範大學科學教育研究所碩士論文,彰化市。
    黃毓翎(2004)。以言談分析方法解析鷹架輔助之線上即時互動。國立中央大學學習與教學研究所碩士論文,未出版,桃園縣。
    簡錦鳳(2008)。文字鷹架對七年級學生科學解釋能力的影響。國立臺灣師範大學科學教育研究所在職進修碩士班碩士論文,未出版,臺北市。
    潘世尊(2002)。教學上的鷹架樣怎麼搭。屏東師院學報,16,263-294
    賴韻如(2009)。鷹架式探究課程對學生心智模式和科學解釋之影響:以板塊構造學說為例。國立臺灣師範大學地球科學系碩士論文,未出版,臺北市。
    蔡敏玲、陳正乾(譯)(2000)。L. S. Vygotsky著。社會中的心智(Mind in society: The development of higher Psychological processes)。台北:心理。
    韓順興(2005)。創造性探究教學對國中生理化科學習動機、創造力與學習成就之影響。國立彰化師範大學科學教育研究所碩士論文,彰化市。
    鄭明長(1997)。近側發展區對教學活動的啟示。研習資訊雙月刊,14(2),79-85。
    鄭麗華(2002)。以探究式實驗活動提升國二學生參與實驗活動及過程技能之行動研究國立彰化師範大學科學教育研究所碩士論文,彰化市。
    謝莉文(2006)。鷹架式科學探究課程研發與實踐的個案研究。國立臺灣師範大學地球科學系碩士論文,未出版,臺北市。
    蘇麗涼(2002)。國中理化實施探究導向教學對學生學習成效影響之研究。國立彰 化師範大學科學教育研究所碩士論文,彰化市。
    盧雪梅(1998)。實作評量的應許、難題和挑戰。教育資料與研究雙月刊,20期

    二、西文部分
    AAAS[American Association for the Advancement of Science] (1989). Science for allAmericans : a Project 2061 report on literacy goals in science, mathematics,and technology (pp. 3-31&133-139). Washington, D.C.: American Association for the Advancement of Science
    AAAS[American Association for the Advancement of Science](1993). Benchmarksfor science literacy. New York: Oxford University Press
    Abd-El-Khalick, F., & Lederman, N. G., (2000). Improving science teachers’ conceptions of nature of science:a critical review of the literature. International Journal of Science Education, 22(7), 665-701.
    Bell, R. (2001). Implicit instruction in technology integration and the nature of science:There's no such thing as a free lunch. Contemporary Issues in Technology and Teacher Education [Online serial] , 1(4) . Available:
    http://www.citejournal.org/vol1/iss4/currentissues/science/article2.htm
    Blumenfeld, P. C., Soloway, E., Marx, R., Krajcik, J. S., Guzdial, M., & Palincsar, A. (1991). Moti- vating project-based learning: Sustaining the doing, supporting the learning. EducationalPsycholo- gist, 26, 369-398.
    Blumenfeld, P.C., R.W. Marx, H. Patrick, and J.S. Krajcik.(1998).Teaching for understanding. In International handbook of teachers and teaching, Vol. 2, edited by B.J. Biddle, T.L. Good, and I.F.Goodson, 819-878. Dordrecht, The Netherlands: Kluwer.
    Blumenfeld, P., Fishman, B. J., Krajcik, J., Marx, R. W., & Soloway, E. (2000). Creating usable innovations in systemic reform: Scaling-up technology-embedded project-based science in urban schools. Educational Psychologist, 35(3), 149-164.
    Bransford, J. , Brown, A. , Cocking, R. and Committee on Developments in the Science of Learning of the National Research Council (eds) (2000) How people learn: Brain, mind, experience, and school National Academy Press , Washington, DC
    Brown, H. Douglas. Principles of Language Learning and Teaching. Englewood Cliffs, NJ: Prentice-Hall, 1987.
    Brown, A. L., & Campione, J. C. (1994). Guided discovery in a community of
    learners. In K. McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice (pp. 229-270). Cambridge, MA: MIT Press/Bradford Books.
    Buckley BC, Gobert JD, Horwitz P (2006) Using log files to track students' model-based inquiry. In: Proceedings of the 7th international conference on learning sciences (Bloomington, Indiana, June 27–July 01). International conference on learning sciences. International Society of the Learning Sciences, pp 57–63
    Bybee, R. W. (2000). Teaching science as inquiry. In J. Minstrell & E. H. van Zee, (Eds.), Inquiring into inquiry learning and teaching in science (pp. 20 – 46). Washington, DC: American Association for the Advancement of Science.
    Davis, E. A. (2003). Prompting middle school science students for productive reflection: Generic and directed prompts. The Journal of the Learning Sciences, 12, 91-142.
    Doolittle, P. E. (1998). Vygotsky’s zone of proximal development as a theory foundation for cooperative learning. Virginia Polytechnic Institute and State University
    Ertepinar, H., & Geban, O. (1996). Effect of instruction supplied with the investigative-oriented laboratory approach on achievenment in a science course. Educational Research , 38, 333-344.
    Edelson, D. C., Gordin, D. N.,&Pea, R. D. (1999). Addressing the challenges of inquiry-based learning through technology and curriculum design. Journal of the Learning Sciences, 8, 391--450.
    Edelson, D. C. (2001). Learning-for-Use: A Framework for the Design of Technology-Supported Inquiry Activities. Journal of Research in Science Teaching, 30(3), 355-385.
    Funk, J. H., Fiel, R. L., Okey, J. R., Jaus, H. H., & Sprague, C. S. (1985).Learning science process skills (2nd ed.). Dubuque, IA: Kendall/Hunt.
    Gibson, H.L. & Chase, C. (2002). Longitudinal impact of an inquiry-based science program on middle school students’ attitudes toward science. Science Education, 86, 693–705.
    Hancock, C., Kaput, J. J., & Goldsmith, L. T. (1992). Authentic inquiry with data: Critical barriers to classroom implementation. Educational Psychologist, 27, 337-364.
    Hmelo, C.E., and S.M. Williams. 1998. Learning through problem solving. Special Issue. The Journal of Learning Science 7(3&4).
    Hogan, K., & Pressley, M. (1997). Scaffolding student learning: Instructional approaches andissues. Cambridge, MA: Brookline Books.
    Hsu, Y.-S. (2004). Using the internet to develop students’ capacity for scientific inquiry. Journal of Educational Computing Research¸31(2), 137-161.
    Hsu, Y.-S. (2008). Learning about seasons in a technologically enhanced environment: The impact of teacher-guided and student-centered instructional approaches on the process of students’ conceptual change. Science Education, 92(2), 320-344.
    Hsu, Y.-S., Yang ,F,-Y., & Tsai ,M,-J.l, (2008), Scaffolded Inquiry Curriculum for Science Learning. National Association for Research in Science Teaching, USA
    Jackson, S., Stratford, S. J., Krajcik, J., and Soloway, E. (1996).Making dynamic modeling accessible to pre-college science students. Interactive Learning Environments, 4, 233-257.
    Jackson, S., Krajcik, J., & Soloway, E. (2000). Model-It: A design retrospective.In Innovations in science and mathematics education:Advanced designs for the technologies of learning, M. Jacobson and R. Kozma(Eds.). New York : Lawrence Erlbaum Associates.
    Judithann, W. W. (1993). Weekend report: A qualitative study of the scaffolding strategies used by a teacher of children with handicaps during a “sharing time”discourse event. Dissertation: University of Cincinnati.
    Keys, C.W., & Bryan, L. (2001). Co-constructing inquiry-based science with teachers:Essential research for lasting reform. Journal of Research in Science Teaching, 38, 631–646.
    Krajcik, J., Blumenfeld, P. C., Marx, R. W., Bass, K. M., & Fredricks, J. (1998). Inquiry in Project-Based Science Classrooms: Initial Attempts by Middle School Students. The Journal of The Learning Sciences, 7(3&4), 313-350.
    Krajcik, J., Czerniak, C., & Berger, C. (1999). How do children construct understanding in science? In teaching children science: A project-based approach (pp. 27-61). Boston, MA: McGraw-Hill/College.
    Krajcik, J.S., Blumenfeld, P., Marx,R.W.,&Soloway,E. (2000). Instructional, curricular, and technological supports for inquiry in science classrooms. In J. Minstrell & E.H.v. Zee (Eds.),Inquiring into inquiry learning and teaching in science (pp. 283–315). Washington, DC:American Association for the Advancement of Science.
    Lederman,N.G.(1999).Teachers’understanding of nature of science and classroom practice: Factors that facilitate or impede the relationship.Journal of Research in Science Teaching ,36(8),916-929.
    Linn, M.C.(1998).The impact of technology on science instruction: Historical trends and current opportunities. In International hand-book of science education, edited by K. Tobin and B.J. Fraser,265-294. Dordrecht, The Netherlands: Kluwer.
    McGilly, L. 1994. Classroom lessons: Integrating cognitive theory and classroom practice. Cambridge, MA: MIT Press.
    McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting Students' Construction of Scientific Explanations by Fading Scaffolds in Instructional Materials. Learning Sciences, 15(2), 153-191
    Minstrell, J., & van Zee, E. H. (Eds.). (2000). Inquiring into inquiry learning and teaching in science.Washington, DC: American Association for the Advancement of Science.
    National Research Council [NRC] (2000). Inquiry and the National Science Education Standards. Washington, DC: National Academies Press
    Ostlund, K. L. (1992). Science process skills: Assessing hands-on studentperformance. New York: Addison-Wesley Publishing Company.
    Phillips, K.A, & Fishman, B. (2002).The inquiry“I”:A tool for learning scientific inquiry. The American Biology Teacher,64(7), 512-520.
    Reiser, B.J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. The Journal of the Learning Sciences, 13(3), 273–304.
    Reiser, B. J., Tabak, I., Sandoval, W. A., Smith, B. K., Steinmuller, F., & Leone, T. J. (2001).BGuILE: Strategic and Conceptual Scaffolds for Scientific Inquiry in BiologyClassrooms. In S. M. Carver & D. Klahr (Eds.), Cognition and Instruction: 25 Years of Progress, (pp. 263-306). Mahwah, NJ: Lawrence Erlbaum Associates.
    Rock, B. N., Blackwell, T. R., Miller, D., & Hardison, A. (1997). The GLOBE program: A model for in- ternational environmental education. In K. C. Cohen (Ed.), Internet links for science education: Stu- dent-Scientist partnerships. New York: Plenum.
    Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context: New York: Oxford University Press
    Roth, W.-M., & Roychoudhury, A. (1993). The development of science process skills in authentic contexts. Journal of Research in Science Teaching, 30(2), 127–152.
    Ryder, J., Leach, J., & Driver, R. (1999). Undergraduate science students’ images of science. Journal of Research in Science Teaching, 36, 331–346.
    Samson, P. J., Steremberg, A., Ferguson, J., Kamprath, M., Masters, J., Monan, M., & Mullen, T. (1994, January). Blue-Skies: A new interactive teaching tool for K-12 education. Proceedings ofthe Third American Meteorological Society Education Symposium (pp. J9-J 14).
    Sandoval,W. A. (2003). Conceptual and epistemic aspects of students’ scientific explanations. Journal of the Learning Sciences, 12(1), 5–51.
    Sandoval, W. A., & Millwood, K. A. (2005). The quality of students’ use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23–55.
    Saunders, W., & Shepardson, D. P. (1987). A comparison of concrete and formal science instruction upon science achievement and reasoning ability of sixth grade students. Journal of Research in Science Teaching, 24, 39-51.
    Schwab, J. & Brandwein, P. F. (1962). The teaching of science: The teaching of ience as enquiry / [by] Joseph J. Schwab; Elements in a strategy for teaching science in the elementary school [by] Paul F. Brandwein. The teaching of science (2th ed., pp. 3-103). Cambridge: Harvard University Press.
    Stone, C. A. (1998). The metaphor of scaffolding: its utility for the field of learning disabilities. Journal of Learning Disabilities, 31, 344-364.
    UNESCO Institute for Education (Ed.). (1998). CON – NEXUS 1.. Hamburg: UIE.
    White, B. Y. (1993). ThinkerTools: Causal models, conceptual change, and science education. Cognition and Instruction, 10, 1-100.
    White, B., & Frederiksen, J. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16, 3-118.
    Waight, N., & Abd-El-Khalick, F. (2007). The impact of technology on the enactment of inquiry in a technology enthusiast’s sixth grade science classroom. Journal of Research in Science Teaching, 44, 154–182.
    Wallace, R., Soloway, E., Krajcik, J., Bos, N., Hoffman, J., Hunter, H., Kiskis, D., Klann, E., Peters, G., Richardson, D., & Ronen, O. (1998,). ARTEMIS: Learner-centered design of an information seeking environment for K-12 education. Conference Proceedings of CHI98: Human Factors in Computing Systems, Los Angeles, California (pp. 195-202). New York: ACM.
    Wood, D. J., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89-100.

    下載圖示
    QR CODE