簡易檢索 / 詳目顯示

研究生: 李江堃
論文名稱: 二引哚衍生物及其金屬錯合物之光物理、光化學性質及其陰離子作用變化之研究
指導教授: 孫世勝
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 157
中文關鍵詞: 二引哚衍生物
論文種類: 學術論文
相關次數: 點閱:256下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們成功的合成出以 bisquinoxaline 做為主體,其具有很好的π電子共振能力;再分別結合 phenanthrene 和 bipyridil 為發光團,indolecarbazole 及 diindole為離子辨識單元的 BN 系列的陰離子感測分子,在 DMSO的溶液中不僅對氟離子、焦磷酸根離子、磷酸根離子及氰離子以1 :1的形式錯合,同時在顏色上也可以用肉眼輕易判斷環境中所含的陰離子。在與陰離子作用後,在光譜上產生明顯的分子內電荷轉移 (ICT, intramolecular charge transfer) ,因此在吸收及放光光譜上有紅位移及新的吸收及放射峰的生成。
    由於與錸(ReI )形成錯合物,因此分子本身具有明顯的分子內電荷轉移 (ICT) 及金屬到官能基的電荷轉移 ( MLCT, metal to ligand charge transfer );因此當離子與我們的化合物以氫鍵作用力的方式結合後,indolecarbazole上NH的孤對電子,就更會使電荷轉移至金屬的部份,也就是電荷分離變得更明顯。
    我們可以清楚的發現,化合物 BN-2 、 BN-4 上 indolecarbazole 的NH的極化程度分別是 BN-4 > BN-2 ,其中化合物 BN-4 在陰離子濃度一個當量時,陰離子會用氫鍵作用力的方式與其結合,而超過一個當量時, indolecarbazole 上的 NH會被去質子化。而化合物 BN-5 在陰離子辨識上,因為 diindole 上的 NH 在空間中會翻轉一個角度,阻礙了陰離子與化合物 BN-5 以氫鍵作用力的方式結合,因此降低了對陰離子辨識的靈敏度。

    We report the synthesis, characterization, and photophysical properties of a series of organic receptors and their corresponding ReI metal complexes as anion probes featuring diindole and indolecarbazole interacting sites incorporating highly chromophoric π-conjugated bisquinoxaline moieties BN-2, BN-4, and BN-5. These sensing molecules are capable of recognizing fluoride, cyanide and pyrophosphate over other anions in DMSO solution with different sensitivities. The probe-anion interactions can be easily visualized via naked-eye colorimetric or luminescent responses. By interacting with anion, the absorption and luminescence change obvious, this is causing by (ICT, intramolecular charge transfer).
    Coordination of probe BN-2 to a ReI center increases the intrinsic acidity of indolecarbazole N-H protons and results in an enhanced sensitivity to anions, so that nature of Lewis acidity of ReI metal exert on the indolecarbazole to enhance probe BN-4 is more sensitive than probes BN-2, and BN-5.
    Compared with probes BN-2 and BN-4, probe BN-2 has weaker acidic indolecarbazole N-H protons and therefore simply forms hydrogen-bonding complexes with fluoride, phosphate, cyanide and pyrophosphate. Due to the higher acidity of indolecarbazole in BN-4, at high concentration of anion, probe BN-4 forms a hydrogen-bound complex which anion followed by indolecarbazole N-H deprotonation with fluoride, pyrophosphate. The sensitivity of anion sensing of probe BN-5 is recating low, because of the non-planar conformation of diindole-based recognition motifs.

    中文摘要 ---------------------------------------------------------------------------------------- I 英文摘要 --------------------------------------------------------------------------------------- II 目錄 -------------------------------------------------------------------------------------------- III 圖目錄 ------------------------------------------------------------------------------------------ V 表目錄 ----------------------------------------------------------------------------------------- XI 附錄--------------------------------------------------------------------------------------------- XII 一、緒論 ----------------------------------------------------------------------------------------- 1 1-1-1、陰離子對環境和人體的影響--------------------------------------------------- 1 1-2、超分子化學--------------------------------------------------------------------------- 2 1-3、感測器的介紹------------------------------------------------------------------------ 2 1-3-1、何謂感測器------------------------------------------------------------------------ 2 1-3-2、感測器的組成--------------------------------------------------------------------- 3 1-4、陰離子感測器在設計上所面臨的挑戰及原因的探討------------------------ 4 1-5、感測器與陰離子之作用力--------------------------------------------------------- 6 1-5-1、靜電作用力------------------------------------------------------------------------ 6 1-5-2、氫鍵作用力------------------------------------------------------------------------ 7 1-5-3、靜電作用力與氫鍵作用力------------------------------------------------------ 9 1-5-4、路易士酸鹼作用力-------------------------------------------------------------- 10 1-6、陰離子化學感測器---------------------------------------------------------------- 11 1-7、分子內部電荷轉移 ( Intramoleculae charge transfer )----------------------- 13 1-8、光誘導電子轉移 ( Photoinduced electron transfer)-------------------------- 19 1-9、含Quinoxaline與其過渡金屬錯合物之離子感測器------------------------- 25 1-10、Indole及Biindole在感測器上的應用---------------------------------------- 29 1-11、研究動機--------------------------------------------------------------------------- 38 二、實驗部份----------------------------------------------------------------------------------- 39 2-1、儀器設備---------------------------------------------------------------------------- 39 2-2、陰離子感測實驗步驟------------------------------------------------------------- 41 2-3、化合物的合成---------------------------------------------------------------------- 45 三、化合物BN系列基本光物理性質------------------------------------------------------ 48 四、化合物對陰離子感應行為實驗-------------------------------------------------------- 50 4-1、化合物BN-2對陰離子感測行為實驗------------------------------------------ 50 4-2、化合物BN-4對陰離子感測行為實驗------------------------------------------ 64 4-3、化合物BN-5對陰離子感測行為實驗------------------------------------------ 72 4-4、化合物BN系列與陰離鍵結常數----------------------------------------------- 84 五、結論----------------------------------------------------------------------------------------- 85 六、化合物的合成步驟----------------------------------------------------------------------- 87 七、未來展望----------------------------------------------------------------------------------- 97 八、參考文獻----------------------------------------------------------------------------------- 98

    [1] Lehn, J.-M. Angew. Chem. Int. Ed. Engl. 1988, 27, 89.
    [2] (a) Valeur, B.; Leray, I. Coord. Chem. Rve. 2002, 205, 3. (b) Schemehl, R. H.; Li, C. J.; Xia, W. S.; Mague, J. T.; Luo, C. P.; Guldi, D. M. J. Phys. Chem. B. 2002, 106, 833. (c) Masilamani, D.; Lucas, M. E. In Fluorescent Chemosensors for Ion and Molecule Recognition; Czarnik, A. W., Ed.; American Chemical Society: Washington, DC, 1992.
    [3] Beer, P. D.; Gale, P. A. Angew. Chem. Int. Ed. 2001, 40, 486.
    [4] Mangani, S., M. Ferraroni in Supramolecular Chemistry of Anions, (Eds.: Bianchi, A.; Bowman-James, K.; García-Españs, E.), Wiley-VCH, New York, 1997, p. 63.
    [5] Schmidtchen, F. P. Angew. Chem. Int. Ed. Engl. 1977, 16, 720.
    [6] Schmidtchen, F. P. Chem. Ber. 1981, 114, 597.
    [7] Baeyer, A. Ber. Dtsch. Chem. Ges. 1886, 19, 2184.
    [8] Benjamin, S.; Nameer, A.; Dermot D. J. Am. Chem. Soc. 2006, 128, 8607.
    [9] Park, C. H.; Simmons, H. E. J. Am. Chem. Soc. 1968, 90, 2431.
    [10] Shionoya, M.; Furuta, Lynch, V. H., Harriman, A.; Sessler, J. L. J. Am. Chem. Soc. 1992, 114, 5714.
    [11] (a)Shriver, D. F.; Biallas, M. J. J. Am. Chem. Soc. 1967, 89, 1078. (b)Katz, H. E. J. Am. Chem. Soc. 1985, 107, 1420.
    [12] Katz, H. E. J. Org. Chem. 1985, 50, 5027.
    [13] Mohand, M.; Francüois, P. G. J. Am. Chem. Soc. 2005, 127, 9681.
    [14] Staffilani, M.; Hancock, K. S. B.; Steed, J. W.; Holman, K. T.; Atwood, J. L.; Juneja, R. K.; Burkhalter, R. S. J. Am. Chem. Soc. 1997, 119, 6324.
    [15] Beer, P. D.; Chen, Z.; Goulden, A. J.; Graydon, A. R.; Stokes, S. E.; Wear, T. J. J. Chem. Soc., Chem. Commun. 1993, 1834.
    [16] Beer, P. D.; Graydon, A. R.; Johnson, A. O. M.; Smith, D. K. Inorg. Chem. 1997, 36, 2112.
    [17] Beer, P. D.; Keefe, A. D. J. Organomet. Chem. 1989, 375, C40.
    [18] Black, C. B.; Andrioletti, B.; Try, A. C.; Ruiperez, C.; Sessler, J. L. J. Am. Chem. Soc. 1999, 121, 10438.
    [19] de Silva, A. P.; de Silva, S. A. J. Chem. Soc., Chem. Commun. 1986, 1709.
    [20] Grynkiewicz, G.; Poenie, M.; Tsien, R.-Y. J. Biol. Chem. 1985, 260, 3440.
    [21] Shao, N.; Wang, H.; Gao, X.-D.; Yang, R.-H.; Chan, W.-H. Anal. Chem. 2010, 82, 4628.
    [22] Esteban, D.; Fabbrizzi, L.; Licchelli, M. J. Org. Chem. 2005, 70, 5717.
    [23] Ruiz, J.; Antón, M. J.; Vivanco, M.; Mosquera, M. E. G.; Quesada, R. Inorg. Chem. 2008, 47, 5540.
    [24] Wu, F.-Y.; Li, Z.; Guo, L.; Wang, X.; Lin, M.-H.; Zhao, Y.-F.; Jiang, Y.-B. Org. Biomol. Chem. 2006, 4, 624.
    [25] Zhao, Q.; Li, F.; Liu, S.; Yu, M.; Liu, Z.; Yi, T.; Huang, C. Inorg. Chem. 2008 47, 9256.
    [26] Zhou, G.; Baumgarten, M.; Mullen, K. J. Am. Chem. Soc. 2008, 130, 12477.
    [27] (a) Chen, C.-L.; Chen, Y.-H.; Chen, C.-Y.; Sun, S.-S. Org. Lett. 2006, 8, 5053. (b) Chung, Y. M.; Raman, B.; Kim, D.-S.; Ahn, K. H. Chem. Commun. 2006, 186. (c) Kim, Y. K.; Lee, Y.-H.; Lee, H-Y.; Kim, M. K.; Cha, G. S.; Ahn, K. H. Org. Lett. 2003, 5, 4003.
    [28] de Silva, A. P.; de Silva, S. A. Chem. Commun. 1986, 1709.
    [29] Hu, C.-W.; Yu, X.-Q. Org. Lett. 2008, 11, 669.
    [30] Thiagarajan, V.; Ramamurthy, P.; Thirumalai, D.; Ramakrishnan, V. T. Org. Lett. 2005, 4, 657.
    [31] Emma, B. V.; Thorfinnur, G. J. Org. Chem. 2008, 73, 8073.
    [32] Bozdemir, O. A.; Sozmen, F.; Buyukcakir, O.; Guliyer, R. G.; Cakmak, Y.; Akkaya, E. U. Org. Lett. 2010, 12, 1400.
    [33] Lee, J. H.; Jeong, A. R.; Shin, I.-S.; Kim, H.-J.; Hong, J.-I. Org. Lett. 2010, 12, 764.
    [34] Charbonniere, L. J.; Ziessel, R. F.; Sams, C. A.; Harriman, A. Inorg. Chem. 2003, 42, 3466.
    [35] Sessler, J. L.; Anzenbacher Jr., P.; Jursíková, K.; Miyaji, H.; Genge, J. W.; Tvermoes, N. A.; Allen, W. E.; Shriver, J. A.; Gale, P. A. Pure Appl. Chem. 1998, 70, 2401.
    [36] (a) Miyaji, H.; Anzenbacher Jr., P. ; Sessler, J. L.; Bleasdale, E. R.; Gale, P. A. Chem. Commun. 1999, 1723. (b) Anzenbacher Jr., P.; Jursíková, K.; Lynch, V. M.; Gale, P. A.; Sessler, J. L. J. Am. Chem. Soc. 1999, 121, 11020. (c) Miyaji, H.; Sato, W.; Sessler, J. L. Angew. Che., Int. Ed. 2000, 39, 1777. (d) Anzenbacher Jr., P.; Jursíková, K.; Shriver, J. A.; Miyaji, H.; Lynch, V. M.; Sessler, J. L.; Gale, P. A. J. Org. Chem. 2000, 65, 7641.
    [37] Black, C. B.; Andrioletti, B.; Try, A. C.; Ruiperez, C.; Sessler, J. L. J. Am. Chem. Soc. 1999, 121, 10439.
    [38] Mizuno, T.; Wei, W.-H.; Eller, L. R.; Sessler, J. L. J. Am. Chem. Soc. 2002, 124, 1134.
    [39] Anzenbacher Jr., P.; Tyson, D. S.; Jursíková, K.; Castellano, F. N. J. Am. Chem. Soc. 2002, 124, 6232.
    [40] Lin, T.-P.; Chen, C.-Y.; Wen, Y.-S.; Sun, S.-S. Inorg. Chem. 2007, 46, 9201.
    [41] (a) Dinofo, P. H.; Coropceanu, V.; Brédas, J.-L.; Hupp, J. T. J. Am. Chem. Soc. 2006, 128, 12592. (b) Walters, K. A.; Ley, K. D.; Cavalaheiro, C. S. P.; Miller, S. E.; Gosztola, D.; Wasielewski, M. R.; Bussandri, A. P.; van Willigen, H.; Schanze, K. S. J. Am. Chem. Soc. 2001, 123, 8329. (c) Sun, S.-S.; Lees, A. J. J. Am. Chem. Soc. 2000, 122, 8956. (d) Baba, A. I.; Shaw, J. R.; Simon, J. A.; Thymmel, R. P.; Schmehl, R. H. Coord. Chem. Rev. 1998, 171, 43. (e) Stoeffler, H. D.; Thornton, N. B.; Temkin, S. L.; Schanze, K. S. J. Am. Chem. Soc. 1995, 117, 7119. (f) Baiano, J. A.; Kessler, R. J.; Lumpkin, R. S.; Munley, M. J.; Murphy, W. R. Jr. J. Phys. Chem. 1995, 99, 17680. (g) Worl, L. A.; Duesing R.; Chen, P.; Ciana, L. D.; Meyer, T. J. J. Chem. Soc., Dalton Trans. 1991, 849. (h) Caspar, A. J.; Meyer, T. J. J. Phys. Chem. 1983, 87, 952.
    [42] Curiel D.; Cowley A.; Beer P. D. Chem. Commun. 2005, 236
    [43] Sessler, J. L.; Cho, D.-G.; Lynch, V.-m. J. Am. Chem. Soc. 2006, 128, 16518
    [44] Gale, P. A. Chem. Commun. 2008, 4525.
    [45] Albrecht, M.; Triyanti, S. S.; Osetska, O.; Raabe, G. ; Wieland, T.; Russo, L.; Rissanen, K. Eur. J. Org. Chem. 2007, 2850.
    [46] Hursthouse, M. B.; Light, M. E. Chem. Commun. 2008, 3007.
    [47] Makuc, D.; Lenařcǐ, M. B.; Gareth, W.; Gale, P. A.; Plavec, J. Org. Biomol. Chem. 2009, 7, 3505.
    [48] Ju, J.; Park, M.; Suk, J.-m.; Lah, M. S.; Jeong, K.-S. Chem. Commun. 2008, 3546.
    [49] Suk, J.-m.; Jeong, K.-S. J. Am. Chem. Soc. 2008, 130, 11868.
    [50] Xavier, G.; Yannick, V.; Jean, N. D. J. Org. Chem. 2007, 72, 3972
    [51] Ting, W.; Yu B.; Liang, M.; Xiu, P.-Y. Org. Biomol. Chem. 2008, 6, 1751
    [52] (a) SPECFIT, version 3.0; Spectra Software Associates: Claix, France, 2005. (b) Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbűhler, A. D. Talanta. 1985, 32, 95. (c) Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbűhler, A. D. Talanta. 1986, 33, 943.

    下載圖示
    QR CODE