研究生: |
蔡守禮 Tsai, Shou-Li |
---|---|
論文名稱: |
北臺灣大屯山區洞穴蝙蝠在不同空間尺度下之棲地利用 Habitat use of cave-roosting bats across different spatial scales in the Datun Mountain area of northern Taiwan |
指導教授: |
李佩珍
Lee, Pei-Jen 黃俊嘉 Hung, Chun-Chia |
口試委員: |
李佩珍
Lee, Pei-Jen 黃俊嘉 Hung, Chun-Chia 劉建男 Liu, Jian-Nan |
口試日期: | 2024/07/07 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 亞熱帶蝙蝠 、低海拔森林 、被動式聲音監測 、蝙蝠棲所 |
英文關鍵詞: | Subtropical bats, lowland forests, passive acoustic monitoring, bat roosts |
研究方法: | 調查研究 |
DOI URL: | http://doi.org/10.6345/NTNU202401626 |
論文種類: | 學術論文 |
相關次數: | 點閱:67 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地景往往能形塑物種和生物多樣性的分佈。隨著自然地景迅速轉變為自然特徵和人為特徵混雜的鑲嵌地景,我們迫切需要了解物種對地景變化的反應。蝙蝠是一個分佈廣泛、種類繁多的哺乳動物類群,因此常被視為陸域生態系環境變化的指標物種。本研究檢測北臺灣大屯山區三種常見洞穴蝙蝠(臺灣葉鼻蝠 Hipposideros armiger terasensis、臺灣小蹄鼻蝠 Rhinolophus monoceros、臺灣大蹄鼻蝠 R. formosae)在不同空間尺度(100公尺、250公尺、500公尺)下對森林覆蓋度和邊緣密度的反應;並探討棲所(包含洞穴、廢棄建物)此一小型地景特徵是否與如何影響蝙蝠之棲地利用。在2022年的6月至8月間,我在研究區域架設了125個超音波錄音器,共獲取1,875小時的音頻記錄。結果顯示,臺灣小蹄鼻蝠的活動量和臺灣大蹄鼻蝠的出現機率在所有尺度下皆與森林覆蓋度呈顯著正相關,臺灣葉鼻蝠的活動量在所有尺度與森林覆蓋度無顯著相關;棲所距離與臺灣小蹄鼻蝠與臺灣葉鼻蝠的活動量有顯著負相關,但與臺灣大蹄鼻蝠的出現機率則無相關。然而,這三個物種在所有尺度下皆不受森林邊緣密度的影響。這些研究結果顯示,森林與棲所是北臺灣大屯山區洞穴蝙蝠所需要的兩個重要地景特徵;然而,不同蝙蝠物種對這些地景特徵有不盡相同的反應,因此瞭解個別物種之棲地利用有助我們推估蝙蝠群聚之地景生態。
Landscapes shape the distribution of species and biodiversity. With natural landscapes rapidly transforming into mosaics of natural and anthropogenic features, there is an urgent need to understand species responses to these landscape changes. Bats are a widely distributed and diverse group of mammals, often regarded as indicator species for terrestrial ecosystem environmental changes. This study examined the responses of three common cave-roosting bats (Hipposideros armiger, Rhinolophus monoceros, and R. formosae) to forest cover and edge density at different spatial scales (100m, 250m, 500m) in the Datun Mountain area of northern Taiwan. Additionally, I investigated how roosts (including caves and abandoned buildings), as small landscape features, might influence bats’ habitat use. From June to August 2022, I deployed ultrasonic recording devices at 125 sites in the study area, collecting a total of 1,875 hours of audio recordings. The results showed that the activity level of R. monoceros and the occurrence probability of R. formosae were positively correlated with forest cover at all scales. The activity level of H. armiger was not significantly correlated with forest cover at all scales Moreover, the distance of roosts negatively influenced the activity levels of R. monoceros and H. armiger but not influenced the occurrence of R. formosae. However, none of the species responded to edge density at any scale. These findings indicate that forests and roosts are two critical landscape features for cave-roosting bats in the Datun Mountain area of northern Taiwan. Nevertheless, different bat species respond differently to these landscape features, necessitates species-specific approaches to our understanding of the landscape ecology of bat assemblages.
賴慶昌。2000。臺灣食蟲性蝙蝠飛翼型態之研究。東海大學生物學系碩士論文。台中,臺灣。
李玲玲,徐昭龍。2006。陽明山國家公園蝙蝠多樣性之研究。內政部營建署陽明山國家公園管理處委託研究報告。臺北,臺灣。
何英毅。2000。台灣葉鼻蝠(Hipposideros terasensis)的棲所選擇。國立臺灣大學動物學研究所碩士論文。臺北,臺灣。
黃子典。1999。陽明山地區臺灣小蹄鼻蝠(Rhinolophus monoceros)的族群動態。國立臺灣大學動物學研究所碩士論文。臺北,臺灣。
徐昭龍,李秉容,范怡均,吳翊瑛,艾業直,黃致融,周政翰。2009。台灣地區蝙蝠洞總檢及調查監測 III。行政院農業委員會林務局農業管理計畫。臺北,臺灣。
趙榮台,李玲玲。2008。陽明山國家公園陸域脊椎動物項調查(一) 竹子山、小觀音山地區。內政部營建署陽明山國家公園管理處委託研究報告。臺北,臺灣。
趙榮台,李玲玲。2009。陽明山國家公園陸域脊椎動物相調查(二) 百拉卡公路以南,陽金公路以西地區。內政部營建署陽明山國家公園管理處委託研究報告。臺北,臺灣。
趙念民。2001。利用回聲定位叫聲特徵鑑別東亞家蝠、摺翅蝠、台灣葉鼻蝠和台灣小蹄鼻蝠之研究。國立中山大學生物科學系研究所碩士論文。高雄,臺灣。
陳俊宏,李玲玲,吳書平,蘇夢淮,陶翼煌,林明聖,楊天南。2010。陽明山國家公園陽金公路以東地區資源調查。內政部營建署陽明山國家公園管理處委託研究報告。臺北,臺灣。
陳俊宏,李玲玲,吳書平,蘇夢淮,李建堂,溫在弘,林楨家,賴進貴。2011。人類活動對陽明山國家公園百拉卡公路以北,陽金公路以西地區資源影響調查。內政部營建署陽明山國家公園管理處委託研究報告。臺北,臺灣。
陳俊宏,李玲玲,吳書平,蘇夢淮,李建堂,溫在弘,黃誌川,賴進貴。2012。陽明山國家公園自然生態環境及其土地利用之研究(百拉卡公路以南,陽金公路以西地區)。內政部營建署陽明山國家公園管理處委託研究報告。臺北,臺灣。
陳湘繁。1995。陽明山地區共域性臺灣葉鼻蝠(Hipposideros armiger)及臺灣小蹄鼻蝠(Rhinolophus monoceros)之活動模式與食性。國立臺灣大學動物學研究所碩士論文。臺北,臺灣。
鄭錫奇,方引平,周政翰。2017。臺灣蝙蝠圖鑑。行政院農業委會特有生物研究保育中心。南投,臺灣。
尤宣雅。2015。臺灣大蹄鼻蝠配對系統及雄性繁殖策略。國立臺灣大學生態學與演化生物學研究所碩士論文。臺北,臺灣。
葉俊佑。2021。墾丁國家公園三種共域食蟲性蝙蝠的資源利用。國立嘉義大學森林暨自然資源學系碩士論文。嘉義,臺灣。
袁孝維,李佩珍,胡哲明,蔡育倫。2021。陽明山國家公園資源調查II-陽金公路以東地區。內政部營建署陽明山國家公園管理處委託研究報告。臺北,臺灣。
袁孝維,李佩珍,胡哲明,蔡育倫。2022。陽明山國家公園資源調查II-陽金公路以西地區。內政部營建署陽明山國家公園管理處委託研究報告。臺北,臺灣。
Avila-Cabadilla, L. D., Sanchez-Azofeifa, G. A., Stoner, K. E., Alvarez-Añorve, M. Y., Quesada, M., Portillo-Quintero, C. A. (2012). Local and landscape factors determining occurrence of phyllostomid bats in tropical secondary forests. PLoS ONE, 7, e35228. https://doi.org/10.1371/journal.pone.0035228
Baldwin, R. F., Trombulak, S. C., Leonard, P. B., Noss, R. F., Hilty, J. A., Possingham, H. P., Scarlett, L., Anderson, M. G. (2018). The future of landscape conservation. BioScience, 68, 60-63. https://doi.org/10.1093/BIOSCI/BIX142
Betts, M. G., Wolf, C., Pfeifer, M., Banks-Leite, C., Arroyo-Rodríguez, V., Ribeiro, D. B., Barlow, J., Eigenbrod, F., Faria, D., Fletcher, R. J., Hadley, A. S., Hawes, J. E., Holt, R. D., Klingbeil, B., Kormann, U., Lens, L., Levi, T., Medina-Rangel, G. F., Melles, S. L., Mezger, D., Morante-Filho, J. C., Orme C. D. L., Peres C. A., Phalan, B. T., Pidgeon, A., Possingham, H., Ripple, W. J., Slade, E. M., Somarriba, E., Tobias, J. A., Tylianakis, J. M., Urbina-Cardona, J. N., Valente, J. J., Watling, J. I., Wells, K., Wearn, O. R., Wood, E., Yang, R., Ewers, R. M. (2019). Extinction filters mediate the global effects of habitat fragmentation on animals. Science, 366, 1236-1239. https://doi.org/10.1126/SCIENCE.AAX9387/SUPPL_FILE/AAX9387_BETTS_SM.PDF
Estrada-Villegas, S., Meyer, C. F. J., Kalko, E. K. V. (2010). Effects of tropical forest fragmentation on aerial insectivorous bats in a land-bridge island system. Biological Conservation, 143, 597-608. https://doi.org/10.1016/J.BIOCON.2009.11.009
Fahrig, L. (2007). Non-optimal animal movement in human-altered landscapes. Functional Ecology, 21, 1003-1015. https://doi.org/10.1111/J.1365-2435.2007.01326.X
Falcão, F., Dodonov, P., Caselli, C. B., dosSantos, J. S., Faria, D. (2021). Landscape structure shapes activity levels and composition of aerial insectivorous bats at different spatial scales. Biodiversity and Conservation, 30, 2545-2564. https://doi.org/10.1007/S10531-021-02210-X
Furey, N. M., Racey, P. A. (2016). Can wing morphology inform conservation priorities for Southeast Asian cave bats? Biotropica, 48, 545-556. https://doi.org/10.1111/BTP.12322
Huang, J. C. C., Chen, W. J., Lin, T. E. (2021). Landscape and species traits co-drive roadkills of bats in a subtropical island. Diversity 2021, 13, 117. https://doi.org/10.3390/D13030117
Huang, J. C. C., Rustiati, E. L., Nusalawo, M., Kingston, T. (2019). Echolocation and roosting ecology determine sensitivity of forest-dependent bats to coffee agriculture. Biotropica, 51, 757-768. https://doi.org/10.1111/BTP.12694
Hunter, M. L. (2017). Conserving small natural features with large ecological roles: An introduction and definition. Biological Conservation, 211, 1-2. https://doi.org/10.1016/J.BIOCON.2016.12.019
Jones, G., Jacobs, D. S., Kunz, T. H., Wilig, M. R., Racey, P. A. (2009). Carpe noctem: The importance of bats as bioindicators. Endangered Species Research, 8, 93-115. https://doi.org/10.3354/ESR00182
Kunz, T. H., Braun de, T. E., Bauer, D., Lobova, T., Fleming, T. H. (2011). Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223, 1-38. https://doi.org/10.1111/J.1749-6632.2011.06004.X
Klingbeil, B. T., Willig, M. R. (2009). Guild‐specific responses of bats to landscape composition and configuration in fragmented Amazonian rainforest. Journal of Applied Ecology, 46, 203-213. https://www.jstor.org/stable/27695936
Lee, Y. F., Kuo, Y. M., Chu, W. C., Lin, Y. H., Chang, H. Y., Chen, W. M. (2012). Ecomorphology, differentiated habitat use, and nocturnal activities of Rhinolophus and Hipposideros species in East Asian tropical forests. Zoology, 115, 22-29. https://doi.org/10.1016/J.ZOOL.2011.07.006
Liu, J., Coomes, D. A., Gibson, L., Hu, G., Liu, J., Luo, Y., Wu, C., Yu, M. (2019). Forest fragmentation in China and its effect on biodiversity. Biological Reviews, 94, 1636-1657. https://doi.org/10.1111/BRV.12519
Laforge, A., Archaux, F., Coulon, A., Sirami, C., Froidevaux, J., Gouix, N., Ladet, S., Martin, H., Barré, K., Roemer, C., Claireau, F., Kerbiriou, C., Barbaro, L. (2021). Landscape composition and life-history traits influence bat movement and space use: Analysis of 30 years of published telemetry data. Global Ecology and Biogeography, 30, 2442-2454. https://doi.org/10.1111/GEB.13397
Maas, B., Karp, D. S., Bumrungsri, S., Darras, K., Gonthier, D., Huang, J. C. C., Lindell, C. A., Maine, J. J., Mestre, L., Michel, N. L., Morrison, E. B., Perfecto, I., Philpott, S. M., Şekercioğlu, Ç. H., Silva, R. M., Taylor, P. J., Tscharntke, T., VanBael, S. A., Whelan, C. J., Williams-Guillén, K. (2016). Bird and bat predation services in tropical forests and agroforestry landscapes. Biological Reviews, 91, 1081-1101. https://doi.org/10.1111/BRV.12211
Meijaard, E., Sheil, D. (2007). Is wildlife research useful for wildlife conservation in the tropics? A review for Borneo with global implications. Biodiversity and Conservation, 16, 3053-3065. https://doi.org/10.1007/S10531-007-9161-Y/TABLES/1
Meyer, C. F. J., Struebig, M. J., Willig, M. R. (2016). Responses of tropical bats to habitat fragmentation, logging, and deforestation. Bats in the Anthropocene: Conservation of Bats in a Changing World, 63-103. C. Voigt & T. Kingston, Eds.: Springer International Publishing.
Miller, B. W. (2001). A method for determining relative activity of free flying bats using a new activity index for acoustic monitoring. Acta Chiropterologica, 3, 93-105.
Norberg, U. M., Rayner, J. M. V. (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 316, 335-427. https://doi.org/10.1098/RSTB.1987.0030
Ober, H. K., Hayes, J. P. (2008). Influence of Vegetation on Bat Use of Riparian Areas at Multiple Spatial Scales. Journal of Wildlife Management, 72, 396-404. https://doi.org/10.2193/2007-193
QGIS Development team. (2024). QGIS Geographic Information System. https://www.qgis.org/en/site/index.html
R Core Team. (2024). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
Rainho, A., Palmeirim, J. M. (2011). The Importance of distance to resources in the spatial modelling of bat foraging habitat. PLoS ONE, 6, e19227. https://doi.org/10.1371/JOURNAL.PONE.0019227
Redford, K. H., Richter, B. D. (1999). Conservation of biodiversity in a world of use. Conservation Biology, 13, 1246-1256. https://doi.org/10.1046/J.1523-1739.1999.97463.X
Reiter, G., Pölzer, E., Mixanig, H., Bontadina, F., Hüttmeir, U. (2013). Impact of landscape fragmentation on a specialised woodland bat, Rhinolophus hipposideros. Mammalian Biology, 78, 283-289. https://doi.org/10.1016/J.MAMBIO.2012.11.003/METRICS
Sanderson, E. W., Redford, K. H., Vedder, A., Coppolillo, P. B., Ward, S. E. (2002). A conceptual model for conservation planning based on landscape species requirements. Landscape and Urban Planning, 58, 41-56. https://doi.org/10.1016/S0169-2046(01)00231-6
Struebig, M. J., Kingston, T., Zubaid, A., Mohd-Adnan, A., Rossiter, S. J. (2008). Conservation value of forest fragments to Palaeotropical bats. Biological Conservation, 141, 2112-2126. https://doi.org/10.1016/j.biocon.2008.06.009
Struebig, M. J., Kingston, T., Zubaid, A., Le Comber, S. C., Mohd-Adnan, A., Turner, A., Kelly, J., Bozek, M., Rossiter, S. J. (2009). Conservation importance of limestone karst outcrops for Palaeotropical bats in a fragmented landscape. Biological Conservation, 142, 2089-2096. https://doi.org/10.1016/J.BIOCON.2009.04.005
Woodroffe, R., Ginsberg, J. R. (1998). Edge effects and the extinction of populations inside protected areas. Science, 280, 2126-2128. https://doi.org/10.1126/SCIENCE.280.5372.2126/SUPPL_FILE/980867.XHTML
Wood, M. R., de Vries, J. L., Monadjem, A., Markotter, W. (2024). Review and meta-analysis of correlates of home range size in bats. Journal of Mammalogy, 1-13. https://doi.org/10.1093/JMAMMAL/GYAE036