研究生: |
Cagayan, Gerald Reymari Acoba Cagayan, Gerald Reymari Acoba |
---|---|
論文名稱: |
以奈米光柵耦合表面電漿子共振增強拉曼散射於生醫感測之應用 Nanograting-coupled Surface Plasmon Resonance (SPR)-enhanced Raman Scattering for biosensing applications |
指導教授: |
邱南福
Chiu, Nan-Fu |
口試委員: |
邱南福
Chiu, Nan-Fu 張家禎 Chang, Chia-Chen 陳震宇 Chen, Chen-Yu |
口試日期: | 2024/03/29 |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 表面電漿子共振增 、拉曼散射 、奈米光柵耦合 、生醫感測之 |
英文關鍵詞: | surface plasmon resonance, Raman scattering, grating-coupling, Raman enhancement, biosensing |
DOI URL: | http://doi.org/10.6345/NTNU202400462 |
論文種類: | 學術論文 |
相關次數: | 點閱:174 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Enormous interest in biosensors has drawn considerable attention among researchers, given its wide applications in clinical treatment, biomedical technology, healthcare, pharmaceuticals, and food science. Specifically, the surface plasmon resonance (SPR) technique has served as a robust biosensor, and its versatile principle makes SPR a widely utilized sensing method extensively employed to study biomolecular interactions, material properties, and chemical processes. In this study, we designed a grating-coupler SPR system integrated into a preconfigured Raman spectrometer system to measure the Raman enhancement on Rhodamine 6G adsorbed on two different structures: linear and circular nanograting. Experiments show that SPR-Raman enhancement is achieved for linear and circular structures by approximately 2.14 × 103 and 2.46 × 103, respectively, when the sample is simultaneously excited by the Raman probe at normal incidence and the SPR system at resonance angle. The propagating SPPs allow the sample to be in an excited state, providing an enhanced evanescent field, which is then coupled with the localized SPPs upon Raman excitation and measurement. These results suggest that SPR can be used to enhance the Raman signal of an analyte and improve detection.
Haleem, A., Javaid, M., Singh, R. P., Suman, R., & Rab, S. (2021). Biosensors applications in medical field: A brief review. Sensors International, 2, 100100. https://doi.org/10.1016/j.sintl.2021.100100
Pandey, P. S., Raghuwanshi, S. K., Shadab, A., Ansari, M. T. I., Tiwari, U. K., & Kumar, S. (2022, July 15). SPR Based Biosensing Chip for COVID-19 Diagnosis—A Review. IEEE Sensors Journal, 22(14), 13800–13810. https://doi.org/10.1109/jsen.2022.3181423
Syed Nor, S. N., Rasanang, N. S., Karman, S., Zaman, W. S. W. K., Harun, S. W., & Arof, H. (2022). A Review: Surface Plasmon Resonance-Based Biosensor for Early Screening of SARS-CoV2 Infection. IEEE Access, 10, 1228–1244. https://doi.org/10.1109/access.2021.3138981
Akib, T. B. A., Nazmuschayadat, M., & Hossain, M. B. (2019, July). Superior Performance of Surface Plasmon Resonance Biosensor for Recognizing of DNA Hybridization. 2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2). https://doi.org/10.1109/ic4me247184.2019.9036574
Masson, J. F. (2017, January 6). Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics. ACS Sensors, 2(1), 16–30. https://doi.org/10.1021/acssensors.6b00763
Moussilli, M. M., Falou, A. R. E., & Shubair, R. M. (2018, August). Overview of Fiber Optic Surface Plasmon Resonance Biosensors for Medical Applications. 2018 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM). https://doi.org/10.1109/antem.2018.8572836
Ravindran, N., Kumar, S., M, Y., S, R., C A, M., Thirunavookarasu S, N., & C K, S. (2021, July 30). Recent advances in Surface Plasmon Resonance (SPR) biosensors for food analysis: a review. Critical Reviews in Food Science and Nutrition, 63(8), 1055–1077. https://doi.org/10.1080/10408398.2021.1958745
Daniyal, W. M. E. M. M., Fen, Y. W., Fauzi, N. I. M., Hashim, H. S., Ramdzan, N. S. M., & Omar, N. A. S. (2020, December 16). Recent Advances in Surface Plasmon Resonance Optical Sensors for Potential Application in Environmental Monitoring. Sensors and Materials, 32(12), 4191. https://doi.org/10.18494/sam.2020.3204
Ahmed, F. E., Wiley, J. E., Weidner, D. A., Bonnerup, C., & Mota, H. (2010). Surface plasmon resonance (SPR) spectrometry as a tool to analyze nucleic acid-protein interactions in crude cellular extracts. Cancer genomics & proteomics, 7(6), 303–309.
Erickson, D. (n.d.). Surface Plasmon Resonance Sensors. Encyclopedia of Microfluidics and Nanofluidics, 1939–1945. https://doi.org/10.1007/978-0-387-48998-8_1504
Helmerhorst, E., Chandler, D. J., Nussio, M., & Mamotte, C. D. (2012). Real-time and Label-free Bio-sensing of Molecular Interactions by Surface Plasmon Resonance: A Laboratory Medicine Perspective. The Clinical biochemist. Reviews, 33(4), 161–173.
Shrivastav, A. M., Cvelbar, U., & Abdulhalim, I. (2021, January 15). A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Communications Biology, 4(1). https://doi.org/10.1038/s42003-020-01615-8
Schasfoort, R. B. M. (2017, May 24). Handbook of Surface Plasmon Resonance. Royal Society of Chemistry.
Wood, R. (1902, September). XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4(21), 396–402. https://doi.org/10.1080/14786440209462857
Fano, U. (1941, March 1). The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves). Journal of the Optical Society of America, 31(3), 213. https://doi.org/10.1364/josa.31.000213
Bohm, D., & Pines, D. (1951, June 1). A Collective Description of Electron Interactions. I. Magnetic Interactions. Physical Review, 82(5), 625–634. https://doi.org/10.1103/physrev.82.625
Otto, A. (1968, August). Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift Für Physik a Hadrons and Nuclei, 216(4), 398–410. https://doi.org/10.1007/bf01391532
Kretschmann, E., & Raether, H. (1968, December 1). Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Zeitschrift Für Naturforschung A, 23(12), 2135–2136. https://doi.org/10.1515/zna-1968-1247
Maier, S. A. (2007). Plasmonics: Fundamentals and Applications. https://doi.org/10.1007/0-387-37825-1
Aftab, M., Mansha, M. S., Iqbal, T., & Farooq, M. (2023, November 3). Surface Plasmon Excitation: Theory, Configurations, and Applications. Plasmonics. https://doi.org/10.1007/s11468-023-02095-2
Mukhtar, W. M., Menon, P. S., Shaari, S., Malek, M. Z. A., & Abdullah, A. M. (2013, April 15). Angle Shifting in Surface Plasmon Resonance: Experimental and Theoretical Verification. Journal of Physics: Conference Series, 431, 012028. https://doi.org/10.1088/1742-6596/431/1/012028
Si, G., Zhao, Y., Leong, E., & Liu, Y. (2014, February 18). Liquid-Crystal-Enabled Active Plasmonics: A Review. Materials, 7(2), 1296–1317. https://doi.org/10.3390/ma7021296
Homola, J., Yee, S. S., & Gauglitz, G. (1999, January 25). Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 54(1–2), 3–15. https://doi.org/10.1016/s0925-4005(98)00321-9
Nguyen, H., Park, J., Kang, S., & Kim, M. (2015, May 5). Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors, 15(5), 10481–10510. https://doi.org/10.3390/s150510481
Yesudasu, V., Pradhan, H. S., & Pandya, R. J. (2021, March). Recent progress in surface plasmon resonance based sensors: A comprehensive review. Heliyon, 7(3), e06321. https://doi.org/10.1016/j.heliyon.2021.e06321
Jatschka, J., Dathe, A., Csáki, A., Fritzsche, W., & Stranik, O. (2016, March). Propagating and localized surface plasmon resonance sensing — A critical comparison based on measurements and theory. Sensing and Bio-Sensing Research, 7, 62–70. https://doi.org/10.1016/j.sbsr.2016.01.003
Mayer, K. M., & Hafner, J. H. (2011, June 8). Localized Surface Plasmon Resonance Sensors. Chemical Reviews, 111(6), 3828–3857. https://doi.org/10.1021/cr100313v
Petryayeva, E., & Krull, U. J. (2011, November). Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Analytica Chimica Acta, 706(1), 8–24. https://doi.org/10.1016/j.aca.2011.08.020
Unser, S., Bruzas, I., He, J., & Sagle, L. (2015, July 2). Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. Sensors, 15(7), 15684–15716. https://doi.org/10.3390/s150715684
Ashrafi, T. M. S., & Mohanty, G. (2022, May 1). Sensitivity calculation for different prism material based surface plasmon resonance sensor: a comparative study. Journal of Physics: Conference Series, 2267(1), 012089. https://doi.org/10.1088/1742-6596/2267/1/012089
Gan, S., Zhao, Y., Dai, X., & Xiang, Y. (2019, June). Sensitivity enhancement of surface plasmon resonance sensors with 2D franckeite nanosheets. Results in Physics, 13, 102320. https://doi.org/10.1016/j.rinp.2019.102320
Meng, Q. Q., Zhao, X., Lin, C. Y., Chen, S. J., Ding, Y. C., & Chen, Z. Y. (2017, August 10). Figure of Merit Enhancement of a Surface Plasmon Resonance Sensor Using a Low-Refractive-Index Porous Silica Film. Sensors, 17(8), 1846. https://doi.org/10.3390/s17081846
Omar, N. A. S., Fen, Y. W., Abdullah, J., Sadrolhosseini, A. R., Mustapha Kamil, Y., Fauzi, N. I. M., Hashim, H. S., & Mahdi, M. A. (2020, March 21). Quantitative and Selective Surface Plasmon Resonance Response Based on a Reduced Graphene Oxide–Polyamidoamine Nanocomposite for Detection of Dengue Virus E-Proteins. Nanomaterials, 10(3), 569. https://doi.org/10.3390/nano10030569
Félix-Rivera, H., & Hernández-Rivera, S. P. (2011, September 17). Raman Spectroscopy Techniques for the Detection of Biological Samples in Suspensions and as Aerosol Particles: A Review. Sensing and Imaging: An International Journal, 13(1), 1–25. https://doi.org/10.1007/s11220-011-0067-0
Jones, R. R., Hooper, D. C., Zhang, L., Wolverson, D., & Valev, V. K. (2019, July 12). Raman Techniques: Fundamentals and Frontiers. Nanoscale Research Letters, 14(1). https://doi.org/10.1186/s11671-019-3039-2
Polykretis, P., Banchelli, M., D’Andrea, C., de Angelis, M., & Matteini, P. (2022, August 1). Raman Spectroscopy Techniques for the Investigation and Diagnosis of Alzheimer’s Disease. Frontiers in Bioscience-Scholar, 14(3), 22. https://doi.org/10.31083/j.fbs1403022
Shipp, D. W., Sinjab, F., & Notingher, I. (2017, June 9). Raman spectroscopy: techniques and applications in the life sciences. Advances in Optics and Photonics, 9(2), 315. https://doi.org/10.1364/aop.9.000315
Roy, S., Gord, J. R., & Patnaik, A. K. (2010, April). Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows. Progress in Energy and Combustion Science, 36(2), 280–306. https://doi.org/10.1016/j.pecs.2009.11.001
Chan, K., & Fale, P. (2015). Label-free optical imaging of live cells. Biophotonics for Medical Applications, 215–241. https://doi.org/10.1016/b978-0-85709-662-3.00008-7
Pilot, Signorini, Durante, Orian, Bhamidipati, & Fabris. (2019, April 17). A Review on Surface-Enhanced Raman Scattering. Biosensors, 9(2), 57. https://doi.org/10.3390/bios9020057
Guan, Z., Håkanson, U., Anttu, N., Wei, H., Xu, H., Montelius, L., & Xu, H. (2010, August). Surface-enhanced Raman scattering on dual-layer metallic grating structures. Chinese Science Bulletin, 55(24), 2643–2648. https://doi.org/10.1007/s11434-010-3189-1
Iqbal, T., Ashfaq, Z., Afsheen, S., Ijaz, M., Khan, M. Y., Rafique, M., & Nabi, G. (2020, January 25). Surface-Enhanced Raman Scattering (SERS) on 1D Nano-gratings. Plasmonics, 15(4), 1053–1059. https://doi.org/10.1007/s11468-019-01114-5
Shen, Y., Cheng, X., Li, G., Zhu, Q., Chi, Z., Wang, J., & Jin, C. (2016). Highly sensitive and uniform surface-enhanced Raman spectroscopy from grating-integrated plasmonic nanograss. Nanoscale Horizons, 1(4), 290–297. https://doi.org/10.1039/c6nh00059b
Smith, E., & Dent, G. (2004, December 17). Modern Raman Spectroscopy – A Practical Approach. https://doi.org/10.1002/0470011831
Ichimura, T., Hayazawa, N., Hashimoto, M., Inouye, Y., & Kawata, S. (2004, June 2). Tip-Enhanced Coherent Anti-Stokes Raman Scattering for Vibrational Nanoimaging. Physical Review Letters, 92(22). https://doi.org/10.1103/physrevlett.92.220801
Steuwe, C., Kaminski, C. F., Baumberg, J. J., & Mahajan, S. (2011, November 18). Surface Enhanced Coherent Anti-Stokes Raman Scattering on Nanostructured Gold Surfaces. Nano Letters, 11(12), 5339–5343. https://doi.org/10.1021/nl202875w
Voronine, D. V., Sinyukov, A. M., Hua, X., Wang, K., Jha, P. K., Munusamy, E., Wheeler, S. E., Welch, G., Sokolov, A. V., & Scully, M. O. (2012, November 27). Time-Resolved Surface-Enhanced Coherent Sensing of Nanoscale Molecular Complexes. Scientific Reports, 2(1). https://doi.org/10.1038/srep00891
Zong, C., Premasiri, R., Lin, H., Huang, Y., Zhang, C., Yang, C., Ren, B., Ziegler, L. D., & Cheng, J. X. (2019, November 21). Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13230-1
Rossi, S., Gazzola, E., Capaldo, P., Borile, G., & Romanato, F. (2018, May 18). Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber. Sensors, 18(5), 1621. https://doi.org/10.3390/s18051621
Chiu, N. F., Hou, C. H., Cheng, C. J., & Tsai, F. Y. (2013). Plasmonic Circular Nanostructure for Enhanced Light Absorption in Organic Solar Cells. International Journal of Photoenergy, 2013, 1–7. https://doi.org/10.1155/2013/502576
Blaize, J.F., Suter, E., & Corbo, C.P. (2016). Serial Dilutions and Plating: Microbial Enumeration. Cambridge, MA MyJoVE Corp 2016, Science Education: Microbiology [Video]. https://www.jove.com/t/10507
Dai, Y., Xu, H., Wang, H., Lu, Y., & Wang, P. (2018, June). Experimental demonstration of high sensitivity for silver rectangular grating-coupled surface plasmon resonance (SPR) sensing. Optics Communications, 416, 66–70. https://doi.org/10.1016/j.optcom.2018.02.010
Leong, H. S., Guo, J., Lindquist, R. G., & Liu, Q. H. (2009, December 15). Surface plasmon resonance in nanostructured metal films under the Kretschmann configuration. Journal of Applied Physics, 106(12). https://doi.org/10.1063/1.3273359
Tahmasebpour, M., Bahrami, M., & Asgari, A. (2014, September 19). Investigation of subwavelength grating structure for enhanced surface plasmon resonance detection. Applied Optics, 53(27), 6307. https://doi.org/10.1364/ao.53.006307
Bog, U., Huska, K., Maerkle, F., Nesterov-Mueller, A., Lemmer, U., & Mappes, T. (2012, May 2). Design of plasmonic grating structures towards optimum signal discrimination for biosensing applications. Optics Express, 20(10), 11357. https://doi.org/10.1364/oe.20.011357
Chen, Y., & Ming, H. (2012, January 3). Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sensors, 2(1), 37–49. https://doi.org/10.1007/s13320-011-0051-2
Hu, C., & Liu, D. (2010, May 17). High-performance Grating Coupled Surface Plasmon Resonance Sensor Based on Al-Au Bimetallic Layer. Modern Applied Science, 4(6). https://doi.org/10.5539/mas.v4n6p8
Indutnyi, I., Ushenin, Y., Hegemann, D., Vandenbossche, M., Myn’ko, V., Lukaniuk, M., Shepeliavyi, P., Korchovyi, A., & Khrystosenko, R. (2016, December). Enhancing Surface Plasmon Resonance Detection Using Nanostructured Au Chips. Nanoscale Research Letters, 11(1). https://doi.org/10.1186/s11671-016-1760-7
Long, S., Cao, J., Wang, Y., Gao, S., Xu, N., Gao, J., & Wan, W. (2020, November). Grating coupled SPR sensors using off the shelf compact discs and sensitivity dependence on grating period. Sensors and Actuators Reports, 2(1), 100016. https://doi.org/10.1016/j.snr.2020.100016
Bruhier, H., Verrier, I., Gueye, T., Varenne, C., Ndiaye, A., Parriaux, O., Veillas, C., Reynaud, S., Brunet, J., & Jourlin, Y. (2022, January 10). Effect of roughness on surface plasmons propagation along deep and shallow metallic diffraction gratings. Optics Letters, 47(2), 349. https://doi.org/10.1364/ol.443659
Wood, A. J., Chen, B., Pathan, S., Bok, S., Mathai, C. J., Gangopadhyay, K., Grant, S. A., & Gangopadhyay, S. (2015). Influence of silver grain size, roughness, and profile on the extraordinary fluorescence enhancement capabilities of grating coupled surface plasmon resonance. RSC Advances, 5(96), 78534–78544. https://doi.org/10.1039/c5ra17228d
Chen, W., Abeysinghe, D. C., Nelson, R. L., & Zhan, Q. (2009, October 30). Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination. Nano Letters, 9(12), 4320–4325. https://doi.org/10.1021/nl903145p
Mandal, P. (2014, April 14). Near-Field Hot Spots in Gold Nanoplasmonic Templates and Their Use for Surface Enhanced Raman Scattering Sensing Application. Conference Papers in Science, 2014, 1–5. https://doi.org/10.1155/2014/396826
Chiu, N. F., Hou, C. H., Cheng, C. J., & Tsai, F. Y. (2013). Plasmonic Circular Nanostructure for Enhanced Light Absorption in Organic Solar Cells. International Journal of Photoenergy, 2013, 1–7. https://doi.org/10.1155/2013/502576
Ikhsan N.I., Yunus, W.M.M., Talib, Z.A., & Wahab, Z.A. (2009). Detection of dye molecules in solution using surface plasmon resonance technique. Solid State Science and Technology, 17 (2). 158 - 166. ISSN 0128-7389
Firdous, S., Anwar, S., & Rafya, R. (2018, April 26). Development of surface plasmon resonance (SPR) biosensors for use in the diagnostics of malignant and infectious diseases. Laser Physics Letters, 15(6), 065602. https://doi.org/10.1088/1612-202x/aab43f
Terdale, S., & Tantray, A. (2017, January). Spectroscopic study of the dimerization of rhodamine 6G in water and different organic solvents. Journal of Molecular Liquids, 225, 662–671. https://doi.org/10.1016/j.molliq.2016.10.090
Wood, A., Mathai, C. J., Gangopadhyay, K., Grant, S., & Gangopadhyay, S. (2017, May 12). Single-Molecule Surface Plasmon-Coupled Emission with Plasmonic Gratings. ACS Omega, 2(5), 2041–2045. https://doi.org/10.1021/acsomega.7b00104
Li, P., Huang, Y., Hu, J., Yuan, C., & Lin, B. (2002, January 19). Surface Plasmon Resonance Studies on Molecular Imprinting. Sensors, 2(1), 35–40. https://doi.org/10.3390/s20100035
Omar, N. A. S., Fen, Y. W., Abdullah, J., Sadrolhosseini, A. R., Mustapha Kamil, Y., Fauzi, N. I. M., Hashim, H. S., & Mahdi, M. A. (2020, March 21). Quantitative and Selective Surface Plasmon Resonance Response Based on a Reduced Graphene Oxide–Polyamidoamine Nanocomposite for Detection of Dengue Virus E-Proteins. Nanomaterials, 10(3), 569. https://doi.org/10.3390/nano10030569
Uddin, S. M. A., Chowdhury, S. S., & Kabir, E. (2021, May 25). Numerical Analysis of a Highly Sensitive Surface Plasmon Resonance Sensor for SARS-CoV-2 Detection. Plasmonics, 16(6), 2025–2037. https://doi.org/10.1007/s11468-021-01455-0
Goul, R., Das, S., Liu, Q., Xin, M., Lu, R., Hui, R., & Wu, J. Z. (2017, January). Quantitative analysis of surface enhanced Raman spectroscopy of Rhodamine 6G using a composite graphene and plasmonic Au nanoparticle substrate. Carbon, 111, 386–392. https://doi.org/10.1016/j.carbon.2016.10.019
de Barros, A., Shimizu, F. M., de Oliveira, C. S., Sigoli, F. A., dos Santos, D. P., & Mazali, I. O. (2020, July 2). Dynamic Behavior of Surface-Enhanced Raman Spectra for Rhodamine 6G Interacting with Gold Nanorods: Implication for Analyses under Wet versus Dry Conditions. ACS Applied Nano Materials, 3(8), 8138–8147. https://doi.org/10.1021/acsanm.0c01530
He, X. N., Gao, Y., Mahjouri-Samani, M., Black, P. N., Allen, J., Mitchell, M., Xiong, W., Zhou, Y. S., Jiang, L., & Lu, Y. F. (2012, April 30). Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes. Nanotechnology, 23(20), 205702. https://doi.org/10.1088/0957-4484/23/20/205702
Hildebrandt, P., & Stockburger, M. (1984, November). Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. The Journal of Physical Chemistry, 88(24), 5935–5944. https://doi.org/10.1021/j150668a038
Kirubha, E., & Palanisamy, P. K. (2014, October 17). Green synthesis, characterization of Au–Ag core–shell nanoparticles using gripe water and their applications in nonlinear optics and surface enhanced Raman studies. Advances in Natural Sciences: Nanoscience and Nanotechnology, 5(4), 045006. https://doi.org/10.1088/2043-6262/5/4/045006
Wu, C., Chen, E., & Wei, J. (2016, October). Surface enhanced Raman spectroscopy of Rhodamine 6G on agglomerates of different-sized silver truncated nanotriangles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 506, 450–456. https://doi.org/10.1016/j.colsurfa.2016.07.020
Mahmood, M. H., Jaafar, A., Himics, L., Péter, L., Rigó, I., Zangana, S., Bonyár, A., & Veres, M. (2022, July 29). Nanogold-capped poly(DEGDMA) microparticles as surface-enhanced Raman scattering substrates for DNA detection. Journal of Physics D: Applied Physics, 55(40), 405401. https://doi.org/10.1088/1361-6463/ac7bba
Darby, B. L., Auguié, B., Meyer, M., Pantoja, A. E., & Le Ru, E. C. (2015, November 2). Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage. Nature Photonics, 10(1), 40–45. https://doi.org/10.1038/nphoton.2015.205
Kahl, M., & Voges, E. (2000, May 15). Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures. Physical Review B, 61(20), 14078–14088. https://doi.org/10.1103/physrevb.61.14078
Ekgasit, S., Thammacharoen, C., Yu, F., & Knoll, W. (2004, March 18). Evanescent Field in Surface Plasmon Resonance and Surface Plasmon Field-Enhanced Fluorescence Spectroscopies. Analytical Chemistry, 76(8), 2210–2219. https://doi.org/10.1021/ac035326f
Shalabney, A., & Abdulhalim, I. (2010, April). Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sensors and Actuators A: Physical, 159(1), 24–32. https://doi.org/10.1016/j.sna.2010.02.005
Cinel, N. A., Cakmakyapan, S., Ertas, G., & Ozbay, E. (2013, May). Concentric Ring Structures as Efficient SERS Substrates. IEEE Journal of Selected Topics in Quantum Electronics, 19(3), 4601605–4601605. https://doi.org/10.1109/jstqe.2012.2235824
Le Ru, E. C., Blackie, E., Meyer, M., & Etchegoin, P. G. (2007, August 23). Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. The Journal of Physical Chemistry C, 111(37), 13794–13803. https://doi.org/10.1021/jp0687908
Pilot, Signorini, Durante, Orian, Bhamidipati, & Fabris. (2019, April 17). A Review on Surface-Enhanced Raman Scattering. Biosensors, 9(2), 57. https://doi.org/10.3390/bios9020057
Meglinski, I. (2015, June 29). Biophotonics for Medical Applications. Elsevier. https://doi.org/10.1016/C2013-0-16335-0
Shvalya, V., Filipič, G., Zavašnik, J., Abdulhalim, I., & Cvelbar, U. (2020). Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The relevance of interparticle spacing and surface morphology. Applied Physics Reviews, 7(3). https://doi.org/10.1063/5.0015246
Chen, Z., Feng, K., Chen, Z., Shen, J., & Li, H. (2022, January 5). Surface-Enhanced Raman Scattering on Silver Sinusoidal Nanograting: Impact of Interactions of Grating-Coupled Surface Plasmon Polaritons. Plasmonics, 17(2), 757–764. https://doi.org/10.1007/s11468-021-01587-3
Liu, Y., Xu, S., Tang, B., Wang, Y., Zhou, J., Zheng, X., Zhao, B., & Xu, W. (2010, March 1). Note: Simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering. Review of Scientific Instruments, 81(3). https://doi.org/10.1063/1.3321313
Abdulhalim, I. (2018). Coupling configurations between extended surface electromagnetic waves and localized surface plasmons for ultrahigh field enhancement. Nanophotonics, 7(12), 1891–1916. https://doi.org/10.1515/nanoph-2018-0129
Mattiucci, N., D’Aguanno, G., Everitt, H. O., Foreman, J. V., Callahan, J. M., Buncick, M. C., & Bloemer, M. J. (2012, January 12). Ultraviolet surface-enhanced Raman scattering at the plasmonic band edge of a metallic grating. Optics Express, 20(2), 1868. https://doi.org/10.1364/oe.20.001868
Mills, D. L. (1998). Nonlinear Optics. https://doi.org/10.1007/978-3-642-58937-9
Shen, Y., Cheng, X., Li, G., Zhu, Q., Chi, Z., Wang, J., & Jin, C. (2016). Highly sensitive and uniform surface-enhanced Raman spectroscopy from grating-integrated plasmonic nanograss. Nanoscale Horizons, 1(4), 290–297. https://doi.org/10.1039/c6nh00059b