簡易檢索 / 詳目顯示

研究生: 陳念澤
Nien-Tse Chen
論文名稱: 光波導元件間耦合效應之研究
Study of Coupling Effect between Optical Waveguide Devices
指導教授: 曹士林
Tsao, Shyh-Lin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 中文
論文頁數: 73
中文關鍵詞: 光波導耦合損失
英文關鍵詞: Optical waveguide, Coupling loss
論文種類: 學術論文
相關次數: 點閱:318下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文主旨在研究光波導元件間耦合損失之參數之變異。首先,我們討論單模光纖對多模光纖的耦合效率,然後探討矽上絕緣層矽晶脊狀光波導對單模光纖與多模光纖的耦合效率,藉以得知光波導元件之耦合損失,接著我們再介紹SOI方形波導元件的製程與元件的光譜特性,藉以得知此元件的物理特性,另外我們同時也討論了不同結構厚度與寬度的元件與光纖的光耦合效率,亦即不同的幾何形狀所產生的耦合效率差異。最後,我們將元件縮小至奈米的尺度,討論在奈米尺度下,光波導元件與光波導元件的光耦合效率會有什麼不同的光學特性。

In this thesis, we discuss various coupling conditions between optical waveguide devices. We simulate the coupling loss of single mode fiber to multi-mode fiber, analyze optical waveguide based on SOI coupling to single mode fiber, furthermore, consider coupling effect between optical waveguide based on SOI and multi-mode fiber. The introduction of 2x2 Multi-mode Interference (MMI) SOI devices and measurement of photo luminance spectrum of the 2x2 MMI devices are reported. Discussion of coupling loss of different width and slab height of 2x2 MMI devices are also presented. Finally, we minimize the size of 2x2 MMI devices to nano-scale and discuss the coupling loss between nano-scale optical waveguide components and optical film.

Chapter 1 Introduction …………………………………………...……1 Chapter 2 Simulation and Experiment of Coupling Loss of SMF to MMF and Waveguide to SMF and MMF ……..................................................................……...4 2-1 Introduction…………………………………….....……………………..5 2-2 Simulation Model and Experimental Setup ………………...………......6 2-2-1 Light Acceptance and NA in Optical Fiber………………….........6 2-2-2 Beam Propagation Method (BPM)………………………………..8 2-2-3 Single Mode SOI Rib Waveguide……………………………….12 2-2-4 Experiment Description………………………………………….13 2-3 Simulation and Experimental Results………………….…..……..……14 2-3-1 Coupling Loss of SMF to MMF…………..……………..………15 2-3-1-1 Longitudinal Offset Consideration……………………....15 2-3-1-2 Lateral Offset Consideration…………………………….16 2-3-2 Coupling Loss of 4μm Waveguide to SMF………..…………….17 2-3-2-1 Longitudinal Offset Consideration……………………...17 2-3-2-2 Lateral Offset Consideration…………………………….18 2-3-3 Coupling Loss of 4μm Waveguide to MMF……..………………18 2-3-3-1 Longitudinal Offset Consideration……………………...19 2-3-3-2 Lateral Offset Consideration…………………………….19 2-3-4 Comparison of Coupling Loss of SMF to MMF, 4μm Waveguide to SMF and 4μm Waveguide to MMF…….………………….20 2-3-4-1 Longitudinal Offset Consideration……………………...20 2-3-4-2 Lateral Offset Consideration…………………………….21 2-4 Summary……………………………………………………………….22 Chapter 3 Fabrication and Experiment of Optical Multimode Interference Based on SOI......………………………..30 3-1 Introduction of Optical Waveguides Based on Silicon-on-Insulator Wafer…………………………………………………………………...31 3-2 Flowchart of Semiconductor Process of Fabricating Optical 2x2 MMI Device………………………………………………………………….32 3-3 Reflected Spectrum of Optical 2x2 MMI Device…...…........................39 3-3-1 Reflected Spectrum of Optical 2x2 MMI Device……………….39 3-3-2 Photo-Luminescence (PL) Spectrum of Optical 2x2 MMI Device………………………………………………………..…40 3-4 Simulation Results of Coupling Loss of 2x2 MMI Device to SMF…...42 3-4-1 Mathematic Formulation of MMI Structure…………………….42 3-4-2 Simulation Results of Coupling Loss of 2x2 MMI Devices to SMF……………………………………………………………..44 3-5 Summary……………………………………………………………….46 Chapter 4 Simulation of Coupling Loss of Minimized Optical Waveguide Components …............................................53 4-1 Introduction of nano-scale devices...……………...................................54 4-2 Simulation of Coupling Loss of Nano-Fiber...………............................54 4-3 Simulation of Coupling Loss of Minimized 2x2 MMI based on SOI….56 4-4 Summary……………………………..…….…………..……...…….…61 Chapter 5 Conclusions………………………………..........…………72 reference 74

[1] A. Sneh, J. E. Zudker, B. I. Miller, and L. W. Stulz, “Polarization-insensitive InP-based MQW digital optical switch”, IEEE Photonics Technology Letters, vol. 9, Issue: 12, pp. 1589-1591, 1997.
[2] T. Kirihara, M. Ogawa, H. Inoue, and K. Ishida, “Lossless and low-crosstalk characteristics in an InP- based 2x2 optical switch”, IEEE Photonics Technology Lett., vol. 5, Issue: 9, pp. 1059-1061, 1993.
[3] F. Dorgeuille, B. M. Feuillade, S. Sainson, S. Slempkes, and Foucher, “Novel approach for simple fabrication of high-pref romance InP-switch matrix based on laser-amplifier gates”, IEEE Photonics Technology Lett., pp. 1178-1180, 1996.
[4] J. F. Knudsen, D. D. Smith, and S. C. Moss, “SOS/SOI optoelectronic switches: effects of ion-implantation and materials processing on nonlinear photoconductive response,” SOS/SOI Technol., pp. 13,1988.
[5] K. Jongdae, R. M. Tae, C. Kyoung-Ik and K. C. Jungling, “Optical characteristics of silicon semiconductor bridges under high current Electron Devices,” IEEE Transactions on Electron Devices, vol. 48, Issue: 5, pp. 852-857, 2001.
[6] Y. Iida, Y. Omura, and H. Kobayashi, “Single-mode silicon optical switch with T-shape SiO/sub 2/ waveguide as a control gate,” 2001 IEEE International SOI Conference, pp. 119-120, 2001.
[7] U. Fischer, T. ZInke, and K. Petermann, “Integrated optical waveguide switches in SOI,” Proceedings of 1995 IEEE International SOI Conference, pp. 141-142, 1995.
[8] J. Boussey, and S. Chouteau, “Optoelectronic integration in silicon-on-insulator technologies,” 1998 CAS’98 Proceedings of International Semiconductor Confernce, vol. 2, pp. 407-415, 1998.
[9] T. T. H. Eng, S. Y. S. Sin, S. C. Kan, and G. K. L. Wong, G.K.L, “Micromechanical optical switching with voltage control using SOI movable integrated optical waveguides,” IEEE Photonics Technology Lett., vol. 7, Issue: 11, pp. 1297-1299, 1995.
[10] G. V. Treyz, “Silicon Mach-Zehnder waveguide interferometers operating at 1.3 um,” Electronics Letters, vol. 27, Issue: 2, pp. 118-120, 1991.
[11] Y. Yamada, M. Kawachi, M. Yasu, and M. Kobayashi, ‘‘Highsilica multimode channel waveguide structure for minimizing fiber–waveguide–fiber coupling loss,’’ J. Lightwave Technol. 4, 277–282 119862.
[12] D. Vezzetti and M. Munowitz, ‘‘Design of strip-loaded optical waveguides for low-loss coupling to optical fibers,’’ J. Lightwave Technol. 10, 581–586, 119922.
[13] M. J. Robertson, S. Ritchie, and P. Dayan, ‘‘Semiconductor waveguides: analysis of coupling between rib waveguides and optical fibres,’’ in Integrated Optical Circuit Engineering II, vol. 578, pp.184–191, 1985.
[14] Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, ‘‘Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,’’ Appl. Phys. Lett. 55, 2389–2391 119892.
[15] Youngchul Chung and Nadir Dagli, “An assessment of finite difference beam propagation method,” IEEE Journal of Quantum Electronics, vol. 26, no. 8, pp. 1335–1339, 1990.
[16] Youngchul Chung and Nadir Dagli, “Modeing of guided-wave optical components with efficient finite-difference beam propagation methods,” IEEE Antennas and Propagation Society International Symposium, 18-25, July, vol. 1, pp. 248–251, 1992.
[17] Tae-Yeoul Yun and Kai Chang, “Uniplanar one-dimensional photonic-bandgap structures and resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 3, pp. 549–553, 2001.
[18] Chi-Yang Chang, and Wei Chen Hsu, “Photonic bandgap dielectric waveguide filter,” IEEE Microwave and Wireless Components Letters, vol. 12, no. 4, pp. 137–139, 2002.
[19] Masahiro Imada, Susumu Noda, Alongkarn Chutinan, Masamitsu Mochizuki, and Tomoko Tanaka, “Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide,” IEEE Journal of Lightwave Technology, vol. 20, no. 5, pp. 845–850, 2002.
[20] P. R. Villeneuve, S. Fan, A, Mekis, and J. D. Joannopoulos, “Photocic crystals and their potential applications,” IEE Colloquium on Semiconductor Optical Microcavity Devices and Photonic Bandgaps (Digest No. 1996/267), pp. 1/1–1/7, 5, Dec. 1996.
[21] Daniel J. Ripin, Kuo-Yi Lim, G. S. Petrich, Pierre R. Villeneuve, Shanhui Fan, E. R. Thoen, John D. Joannopoulos, E. P. Ippen, and L. A. Koldziejski, “One-dimensional photonic bandgap microcavities for strong optical confinement in GaAs and GaAs/AlxOy semiconductor waveguides,” IEEE Journal of Lightwave Technology, vol. 17, no. 11, pp. 2152–2160, 1999.
[22] Jerry C. Chen, Hermann A. Haus, Shanhui Fan, Pierre R. Villeneuve, and J. D. Joannopoulos, “Optical filters from photonic band gap air bridges,” IEEE Journal of Lightwave Technology, vol. 14, no. 11, pp. 2575–2580, 1996.
[23] H. A. Haus, S. Fan, J. S. Foresi, P. R. Villeneuve, J. D. Joannopoulos, and B. S. Little, “Optical-wavelength-scale filter,” Conference Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting (LEOS’07 10th Annual Meeting), vol. 2, pp. 96–97, 10-13, Nov. 1997.
[24] S. Lan and H. Ishikawa, “High-efficiency reflection-type all-optical switch for ultrashort pulses based on a single asymmetrically confined photonic crystal defect,” Optics Letters, vol. 27, no. 14, pp. 1259–1261, 2002.
[25] T. M. Benson, P. Sewell, A. Vukovic, and D. Z. Djurdjevic, “Advances in the finite difference beam propagation method,” Opt. Networks, pp. 36-41, 2001.
[26] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol., vol. 13, no. 4, pp. 615-627, 1995.
[27] M. Yamane & Y. Asahara Glasses for Photonics (Cambridge Univ. Press, Cambridge, UK, 2000).
[28] H. Murata Handbook of Optical ibers and Cables 2nd edn (Marcel Dekker, New York, 1996).
[29] D. K. Mynbaev & L. L. Scheiner Fiber-Optic Communications Technology (Prentice Hall, New York, 2001).
[30] D. Marcuse “Mode conversion caused by surface imperfections of a dielectric slab waveguide.” Bell Syst. Tech. J. 48, 3187–3215, 1969.
[31] D. Marcuse & R. M. Derosier “Mode conversion caused by diameter changes of a round dielectric waveguide.” Bell Syst. Tech. J. 48, 3217–3232, 1969.
[32] F. Ladouceur, “Roughness, inhomogeneity, and integrated optics. “J. Lightwave Technol. 15, 1020–1025, 1997.
[33] K. K. Lee et al. “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model.” Appl. Phys. Lett. 77, 1617–1619 (2000). Erratum. Appl. Phys. Lett. 77, 2258, 2000.
[34] C. V. Boys “On the production, properties, and some suggested uses of the finest threads.” Phil. Mag. 23, 489–499, 1887.
[35] R. Threlfall, On Laboratory Arts (Macmillan, London, 1898).
[36] J. C.Knight, Cheung, G., Jacques, F. & Birks, T. A. “Phase-matched excitation of whispering-gallerymode resonances by a fiber taper.” Opt. Lett. 22, 1129–1131, 1997.
[37] T. A. Birks, W. J. Wadsworth & P. St. J. Russell “Supercontinuum generation in tapered fibers.” Opt. Lett. 25, 1415–1417, 2000.
[38] M. Cai & K. Vahala “Highly efficient hybrid fiber taper coupled microsphere laser.” Opt. Lett. 26, 884–886, 2001.
[39] G. Kakarantzas, T. E. Dimmick, T. A. Birks, Le Roux, R. & Russell, P. St. J. “Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers.” Opt. Lett. 26, 1137–1139, 2001.
[40] T. E. Dimmick, G. Kakarantzas, T. A. Birks, & P. St. J. Russell, “Carbon dioxide laser fabrication of fused-fiber couplers and tapers.” Appl. Opt. 38, 6845–6848, 1999.
[41] A. J. C. Grellier, N. K. Zayer & C. N. Pannell, “Heat transfer modeling in CO2 laser processing of optical fibres.” Opt. Commun. 152, 324–328, 1998.
[42] Z. L. Wang, R. P. P. Gao, J. L. Gole & Stout, J. D. “Silica nanotubes and nanofiber arrays.” Adv. Mater. 12, 1938–1940, 2000.
[43] Z.W. Pan, Z. R. Dai, Ma, C. &Wang, Z. L. “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires.” J. Am. Chem. Soc. 124, 1817–1822, 2002.
[44] J. Q. Hu, X. M. Meng, Y. Jiang, Lee, C. S. & Lee, S. T. “Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers.” Adv. Mater. 15, 70–73, 2003.
[45] L. Tong, Rafael R. Gattass, Jonathan B. Ashcom1, Sailing He, Jingyi Lou, Mengyan Shen, Iva Maxwell1 & Eric Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” NATURE, Vol.426, p.816-819, 2003.

QR CODE