簡易檢索 / 詳目顯示

研究生: 張明宗
論文名稱: 電化學沉積技術應用於微型熱電致冷器之研製
Development of thermoelectric micro-cooler using a electrochemical deposition technique
指導教授: 楊啟榮
Yang, Chii-Rong
程金保
Cheng, Chin-Pao
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 112
中文關鍵詞: 碲鉍合金銻鉍合金熱電材料致冷晶片電化學技術
英文關鍵詞: bismuth telluride, antimony telluride, thermoelectric, cooling chip, electrochemical technique
論文種類: 學術論文
相關次數: 點閱:320下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電子及光電元件產品封裝縮小化及高發熱密度的趨勢,高效率的冷卻及精確控溫技術越來越重要。微熱電元件具有體積小、無污染、控溫效率高等優點,正好符合此一趨勢。由於微電子及微機電技術的進步,使得熱電元件的設計及製程技術而有了新的發展及應用,而微小化的熱電元件更適合應用於微小的電子元件散熱,延長使用壽命及提高元件穩定度。
    本研究利用電化學沉積的技術,電鍍n-type熱電材料Bi2Te3及p-type熱電材料Sb2Te3的合金電鍍,研製微型熱電致冷晶片,並探討不同金屬基板上其熱電材料的表面形貌,並找出較佳的電鍍參數,以比較在各個參數不同的情形下之改變,可達到材料之最佳匹配。利用黃光微影的製程分別將上下金屬電極及p-type及n-type腳位做連結,以完成製程整合。
    本實驗以濃度為7.5 × 10-3 M 的Bi2O3與10 ×10-3 M 的TeO2,成功鍍出了緻密性良好的n-type Bi2Te3熱電材料,其鍍率約為6 um/hr,其成分為Bi約為45 %,Te成分約為55 %,故後續將再調變濃度,期望達到Bi 40 %及Te 60 %p-type Sb2Te3熱電材料已接近材料所需之成分比率,Sb成分約為42 %,Te成分約為58 %,但對於其表面粗操度仍需進ㄧ步的改善。
    而由實驗結果做一實際運作,並對微熱電製冷晶片做特性量測,包括了XRD、SEM、Seebeck 係數、熱傳導係數以及電阻值的量測。

    With the electronic and optoelectronic components products and packaging technology grow up, and high fever of electronic products, high-efficiency cooling and precise temperature control technology is increasingly important.
    Micro thermoelectric element is small, clean, efficient, high temperature control device. By using its cooling application, we use costless electrochemical technique to fabricate micro thermoelectric cooler, in order to solution thermal problem of electronic products.
    We use Bi2O3, Sb2O3 and TeO2 metal oxide powder dissolve in diluted HNO3 for preparing electrolyte. And, we use different metal based plate to electroplate thermoelectric materials, in order to find better based for electroplating n-type junction Bi2Te3 and p-type junction Sb2Te3.
    We find a better electroplating conditions to electroplate Bi2Te3 material.The concentration of the metal powder choose 7.5 × 10-3 M Bi2O3 and 10 × 10-3 M TeO2 to electroplate a smooth morphology junction, and the composition of Bi near 45 % and Te 55 %, the growth rate is about 6 um/hr. The other thermoelectric material Sb2Te3 can be found that the composition of Sb is neat 42 %, and Te 58 %, it is very close the proportional composition. But, the smoothness of Sb2Te3 is needed to be improve.

    總 目 錄 摘要 I 總目錄 III 圖目錄 V 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 散熱元件介紹 2 1.3 研究動機與目的 5 1.4 論文架構 7 第二章 熱電效應原理介紹 16 2.1 三大熱電效應 16 2.1.1 席貝克效應 16 2.1.2 帕耳帖效應 18 2.1.3 湯姆生效應 19 2.2 熱電優值 20 2.3 熱電材料的分類與選擇 22 2.4 電化學沉積的基本原理 23 2.5影響合金電鍍之參數 28 2.6電鍍與電鑄技術的異同 29 2.7電鍍合金的特點 30 第三章 文獻回顧 35 3.1 材料備製方法之分類 35 3.2 傳統技術製造法 35 3.2.1 布里茲曼法 35 3.2.2 CZ法 36 3.2.3 熱壓成形法 36 3.2.4 熱擠壓成形法 37 3.3 微加工技術製造法 40 3.3.1 濺鍍/蒸鍍法 40 3.3.2 MOCVD法 41 3.3.3 電化學沉積法 42 第四章 實驗設計與流程 56 4.1 實驗規劃 56 4.2 製成規劃與設備介紹 58 4.2.1 微影製程 58 4.2.2 合金電鑄 59 4.3 熱電材料之合金電鑄 62 4.3.1 哈爾式槽試驗 62 4.3.2 小型電鍍槽電鍍實驗 63 4.4 鍍層分析與量測 64 4.4.1 掃描式電子顯微鏡 64 4.4.2 能量分散式光譜分析儀 64 4.4.3 表面輪廓儀 65 4.4.4 X-ray繞射儀 65 4.5 材料的熱電特性量測 65 4.5.1 席貝克係數的量測方法 65 4.5.2 熱傳導係數的量測方法 66 4.5.3 導電率量測方法 67 4.5.4 紅外線熱像儀 68 第五章 實驗結果與討論 80 5.1 電化學沉積鉍化碲合金 80 5.1.1鉍化碲合金沉積於銅基板之探討 80 5.1.2鉍化碲合金沉積於銀基板之探討 81 5.1.3鉍化碲合金沉積於金基板之探討 83 5.2 電化學沉積銻化碲合金 99 5.2.1銻化碲合金沉積於金基板之探討 99 第六章 結論與未來展望 105 參考文獻 107 圖 目 錄 Figure 1-1 Schematic diagram of thermoacoustic refrigerator 9 Figure 1-2 Schematic of two-phase microchannel heat sink for model development 9 Figure 1-3 MEMS jets process flow chart 10 Figure 1-4 Droplet/jet impingement schematic of EDIFICE 10 Figure 1-5 Schematic chart of thermoelectric 11 Figure 1-6 Schematic chart of heat pipe 11 Figure 1-7 Schematic chart of loop heat pipe 12 Figure 1-8 Schematic chart of capillary pumped loop 12 Figure 1-9 Moore’s law 14 Figure 1-10 Commercial bulk thermoelectric cooling chip 15 Figure 2-1 Schematic chart of Seebeck effect 31 Figure 2-2 Schematic chart of Peltier effect 31 Figure 2-3 Schematic chart of Thomson effect 32 Figure 2-4 Performance of the established P-type thermoelectric materials 33 Figure 2-5 Performance of the established N-type thermoelectric materials 33 Figure 2-6 Materials dependence of electrical conductivity, Seebeck coefficient, power factor, and thermal conductivity 34 Figure 3-1 Schematic diagram of Bridgman method 38 Figure 3-2 Schematic diagram of CZ method 38 Figure 3-3 Schematic diagram of hot pressing method 39 Figure 3-4 Schematic diagram of hot extrusion method 39 Figure 3-5 (a) In-plane (lateral) Peltier cooler (b) Thermoelectric mini-device on Kapton substrate 44 Figure 3-6 The supporting membrane affects largely the performance of lateral thermoelectric cooler 45 Figure 3-7 Thermoelectric properties of Bi-Te films deposition at 260 °C on glass, mica, MgO, and Al2O3 substrate 45 Figure 3-8 (left) Bi2Te3 films deposited at (a) 130 °C (b) 260 °C, both with at. %Te of 60, and (c) 260 °C with at. % Te of 54. (right) Sb2Te3 films deposited at (a) 170 °C (b) 270 °C, both with at. %Te of 60, and (c) 260 °C with at. % Te of 50 46 Figure 3-9 A cross section SEM picture of the overgrowth of 5 mm thick p-(Bi, Sb)2Te3 layer over a contact electrode 47 Figure 3-10 Schematic diagram of experimental setup for co-sputtering 47 Figure 3-11 (a) Te contents in deposited as a function of RF power of Te target (b) Seebeck coefficient of telluride films as a finction of the deposition temperature 48 Figure 3-12 Schematic illustration of MOCVD PROCESS 48 Figure 3-13 (a) Schematic diagram of Peltier device (b) Peltier cooling device as a function of applied current 49 Figure 3-14 (a) SEM close up of a completed p-type and n-type couple(~20 mm heights) SEM overview of entire completed microdevice (b) Cooling delta (from temperature averaging) vs. applied current was plotted and illustrates a Delta-max at around 2K 51 Figure 3-15 electrochemical MEMS fabrication steps for thermoelectric microdevice 52 Figure 3-16 Surface morphology of BixTey films electrodeposited at different potentials: (a) -10 mV, (b) -60 mV, (c) -100 mV, (d) -170 mV, (e) -200 mV, (f) -300 mV, (g) -400 mV 53 Figure 3-17 SEM images of (top) antimony telluride and (bottom) antimony 54 Figure 3-18 XRD pattern of an electrodeposited (a) Sb layer and (b) Sb2Te3 54 Figure 3-19 SEM images of Sb2Te3 films deposited on (top) Ag working electrode and (bottom) Si (100) working electrode (b) XRD pattern of Sb2Te3 films deposited on (left) Ag and (right) Si (100) 55 Figure 4-1 Flow chart of research 57 Figure 4-2 Flow chart of process 61 Figure 4-3 DC & RF sputter 71 Figure 4-4 Thermal evaporator 71 Figure 4-5 Lithography process equipments (a) spin coater (b) hot plate (c) UV mask aligner (d) optical microscope 73 Figure 4-6 Schematic diagram of Hull cell equipment 74 Figure 4-7 Schematic diagram of 1L electroplating tank 75 Figure 4-8 SEM and EDS system 76 Figure 4-9 Surface profiler 76 Figure 4-10 X-ray diffraction 76 Figure 4-11 Schematic diagram of Seebeck coefficient measurement 77 Figure 4-12 Schematic diagram of thermal conductivity measurement equipment 78 Figure 4-13 Schematic diagram of electrical conductivity equipment 78 Figure 4-14 Infrared radiometer 78 Figure 5-1 (right) OM images of Bi-Te film deposited under 1 × 10-3 M, applied current (a) 100 mA (b) 50 mA 85 Figure 5-2 SEM morphology of Bi-Te alloy deposited on copper substrate 86 Figure 5-3 SEM morphology of Bi-Te alloy deposited on copper substrate 87 Figure 5-4 SEM morphology of Bi-Te alloy deposited on Ag substrate at concentration of 1 × 10-3 M 88 Figure 5-5 SEM morphology of Bi-Te alloy deposited on Ag substrate at concentration of 5 × 10-3 M 89 Figure 5-6 SEM morphology of Bi-Te alloy deposited on Ag substrate at concentration of 10 × 10-3 M 90 Figure 5-7 Thickness of Bi-Te alloy deposited for 3 hours 91 Figure 5-8 SEM morphology of Bi-Te alloy deposited on Ag substrate for 3 hours 91 Figure 5-9 Concentration of Bi-Te mole ratio versus Bi at. % 92 Figure 5-10 SEM morphology of Bi-Te alloy deposited on Au substrate at concentration of 5 × 10-3 M 93 Figure 5-11 SEM morphology of Bi-Te alloy deposited on Au substrate at concentration of 7.5 × 10-3 M 94 Figure 5-12 SEM morphology of Bi-Te alloy deposited on Au substrate for 3 hours 95 Figure 5-13 Close view of single junction of Bi-Te alloy 95 Figure 5-14 Over view of junction of Bi-Te alloy 96 Figure 5-15 Thickness of Bi-Te alloy deposited on Au substrate for 3 hours 96 Figure 5-16 SEM morphology of Bi-Te alloy deposited on Au substrate at concentration of 10 × 10-3 M 97 Figure 5-17 Concentration of Bi-Te mole ratio versus Bi at. % 98 Figure 5-18 SEM morphology of Sb-Te deposited on Au substrate at concentration of 5 × 10-3 M 101 Figure 5-19 SEM morphology of Sb-Te deposited on Au substrate at concentration of 10 × 10-3 M 103 表 目 錄 Table 1-1 Microfabrication technologies in MEMS field 8 Table 1-2 Development history of thermoelectric material 13 Table 1-3 The amount of transistors development in modern times 14 Table 3-1 Room temperature values of Seebeck coefficient (a), Hall mobility (m), electrical resistivity (r), and carrier concentration (n and p) for n-type Bi2Te3, p-type (Bi1-xSbx)2Te3 (x=0.73 and 0.77) films 50 Table 3-2 Atomic percentages as a function of the applied potential(vs. Ag/AgCl (3 M NaCl)) for deposition on Pt electrodes calculated from electron probe microanalysis. The concentration of the solution is HTeO2+ (1 × 10-2 M) and Bi3+ (0.75 × 10-2 M) in 1 M HNO3. Deposition time, 60 min except for the E = -0.52 in which the growth was so fast that a thick film formed in 20 min 51 Table 4-1 Experimental facilities 69 Table 4-2 Experimental chemical medicines 70 Table 5-1 Analysis Bi-Te element of the film deposited on Cu substrate 86 Table 5-2 Analysis Bi-Te element at concentration of Bi2O3 5 × 10-3 M of the film 93 Table 5-3 Analysis Bi-Te element at concentration of Bi2O3 7.5 × 10-3 M of the film 94 Table 5-4 Analysis Bi-Te element at concentration of Bi2O3 10 × 10-3 M of the film 97 Table 5-5 Analysis Sb-Te element at concentration of Sb2O3 5 × 10-3 M of the film 102 Table 5-6 Analysis Sb-Te element at concentration of Sb2O3 10 × 10-3 M of the film 104

    1. 徐文祥, “微機電系統技術與應用”, 精密儀器發展中心,第一章, pp.4 (2003).
    2. C. Tsai, R. L. Chen, C. C. L. Chen, J. Denatale, “Micromachined stack component for miniaturethermoacoustic refrigerator”, IEEE, (2002), pp. 149-151.
    3. J. M. Koo, L. Jiang, L. Zhang, P. Zhou, S. S. Banerjee, T. W. Kenny, J. G. Santiago, K. E. Goodson, “Modeling of two-phase microchannel heat sinks for VISI chips”, IEEE, (2001), pp. 422-426.
    4. S. Wu, J. Mai, Y. C. Tai, C. M. Ho, “Micro heat exchanger using MEMS impinging jets”, IEEE, (1999), pp. 171-176.
    5. C. H. Amon, J. Murthy, S. C. Yao, S. Narumanchi, C. F. Wu, C. C. Hsieh, “MEMS-enable thermal management of high-heat-flux devices EDIFICE: embedded droplet impingement for intergrated cooling of electronics.”, Experimental thermal and fluid science, (2001), pp. 231-242.
    6. “Thermoelectrics handbook micro to nano”, D. M. Rowe, (2006)
    7. Y. Avenas, M. Ivanova, N. Popova, C. Schaeffer, J. L. Schanen, “Thermal analysis of thermal spreaders used in power electronics cooling.”, IEEE, (2002), pp. 216-221.
    8. J. Kim, E. Golliher, “Steady state model of a micro loop heat pipe.”, IEEE, (2002), pp. 137-144.
    9. R. Schweickart, L. Ottenstein, B. Cullimore, C. Egan, D. Wolf, “Testing of controller for a hybrid capillary pumped loop thermal control system.”, IEEE, (1989), pp. 69-74.
    10. D. J. Yao, “In-plane MEMS thermoelectric microcooler”, Ph. D. dissertation of UCLA, USA, (2001).
    11. Microsoft, http://www.microsoft.com.
    12. http://electronics-cooling.com/
    13. W. Ehrfeld, V. Hessel, H. Löwe, C Schulz, L. Weber, “Materials of LIGA technology”, Microsystem Technologies, Vol. 5, No. 3, (1999), pp.105-112.
    14. 楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, (2003) pp. 141-319.
    15. “Handbook of thermoelectrics” ,Alexander Borshchevsky, (1995), pp.83-97.
    16. O. Yamashita, S. Tomiyoshi, K. Makita, “Bismuth telluride compounds with high thermoelectric figures of merit”, Journal of Applied Physics, Vol. 93, Issue 1, January 1, (2003), pp. 368-374.
    17. D. B. Hyun, J. S. Hwang, B. C. You, T. S. Oh, C. W. Hwang, “Thermoelectric properties of the n-type 85 % Bi2Te3-15 % Bi2Se3 alloys doped with Sbl3 and CuBr”, Journal of Materials Science Vol. 33, (1998), pp. 5595 – 5600.
    18. http://people.deas.harvard.edu/
    19. L. D. Ivanova,Y. V. Granatkina,N. V. Polikarpova, E. I. Smirnova, “Selenium-doped Sb2Te3-Bi2Te3 crystals”, Inorganic Materials Vol. 33, (1997), pp. 558-561
    20. L. D. Ivanova,Y. V. Granatkina,N. V. Polikarpova, Properties of single-crystal in the Sb2Te3-Bi2Te3 solid solution system”, Inorganic Materials, Vol. 31, (1995), pp.678-681.
    21. L. D. Ivanova, S. A. Brovikova, H. Sussmann, P. Reinshaus, “Effect of growth-conditions on the homogeneity of Bi0.5Sb1.5Te3 singal-crystals”, Inorganic Materials, Vol. 31, (1995), pp. 682-686.
    22. http://www.dynacer.com/
    23. D. B. Hyun, J. S. Hwang, J. D. Shim, T. S. Oh, “Thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing method”, Journal of Materials Science Vol. 36, Number 5, (2001), pp. 1285-1291.
    24. B. Wölfing, C. Kloc1, J. Teubner, E. Bucher, “High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity”, Physical Review Letters, Vol, 86, Issue 19, (2001), pp. 4350-4353.
    25. http://www.hardwaresource.com
    26. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit “, Nature Vol. 413, (2001), pp. 597-602.
    27. J. Seo, K. Park, D. Lee, C. Lee, “Microstructure and Thermoelectric Properties of P-type Bi0.5Sb0.5Te0.5 compounds fabricated by hot pressing and hot extrusion”, Vol. 38, Issue 3, (1998), pp. 477-484.
    28. L. M. Goncalves, C. Couto, P. Alpuim , D.M. Rowe, J. H. Correia, ”Thermoelectric microstructures of Bi2Te3/Sb2Te3 for a self-calibrated micro-pyrometer”, Sensors and Actuators A 130-131, (2006), pp. 346-351.
    29. L. W. da Silva, M. Kaviany, C. Uherc, “Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems”, Journal of Applied Physics, Vol. 97, (2005), pp. 114903-1.
    30. H. Böttner, J. Nurnus, A. Gavrikov, G. Kühner, M. Jägle, C. Künzel, D. Eberhard, G. Plescher, A. Schubert, K. H. Schlereth, “ New thermoelectric components using microsystem technologies”, Journal of Microeletromechanical Systems, Vol. 13, No. 3, (2004), pp. 414-420.
    31. D. H. Kim, E. Byon, G. H. Lee, S. ChoEffect, “Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering”, Thin Solid Films Vol. 510 (2006), pp. 148-153.
    32. A. Boulouza, S. Chakrabortyb, A. Giani, F. P. Delannoy, A. Boyer, “Transport properties of V–VI semiconducting thermoelectric BiSbTe alloy thin films and their application to micromodule Peltier devices”, Journal of Applied Physics Vol. 89, No. 9, (2001), pp. 5009-5014.
    33. A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, E. Charles, A. Boyer, “Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD”, Materials Science and Engineering B64, (1999), pp. 19-24.
    34. A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, A. Boyer, “MOCVD growth of Bi2Te3 layers using diethyltellurium as a precursor”, Thin Solid Films 315, (1998), pp. 99–103.
    35. M. Takahashi, Y. Katou, K. Nagata, S. Furuta, ” The composition and conductivity of electrodeposited Bi-Te alloy films”, Thin Solid Film, vol. 240, (1994), pp. 70-72.
    36. M. S. Martin-Gonzalez, A. L. Prieto, R. Gronsky, T. Sands, A. M. Stacya, “ Insights into the electrodeposition of Bi2Te3”, Journal of The Electrochemical Society, Vol. 149, No. 11, (2002), pp.546-554.
    37. J. P. Fleurial, A. Borshchevsky, M. A. Ryan, W. M. Philips, J. G. Snyder, T. Caillat, E. A. Kolawa, J. A. Herman, P. Mueller, M. Nicolet, “ Development Of thick-Film thermoelectric microcoolers using electrochemical deposition”, Materials Research Society Symposium Proceedings, Vol. 545, (1998), pp. 493.
    38. J. P. Fleurial, G. J. Snyder, J. A. Herman, P.H. Giauque, W.M. Phillips, M. A. Ryan, P. Shakkottai, E. A. Kolawa, M. A. Nicolet, “Thik-film thermoelectric microdvices”, 18th International Conference of Thermoelectrics, (1999), pp. 294-295.
    39. J. R. Lim, G. J. Snyder, C. K. Huang, J. A. Herman, M. A. Ryan, J. P. Fleurial, “Thermoelectric Microdevice Fabrication Process and Evaluation at the Jet Propulsion Laboratory (JPL)”, 21th International Conference of Thermoelectrics, (2002).
    40. G. J. Snyder, J. R. Lim, C. K. Huang, J. P. Fleurial, “Thermoelectric microdevice fabricated by MEMS-like electrochemical process”, Nature Materials, Vol. 2, (2003), pp.528-532.
    41. B. Y. Yoo, C. K. Huang, J. R. Lim, J. Hermanb, M. A. Ryan, J. P. Fleurial, N.V. Myung, “Electrochemically deposited thermoelectric n-type Bi2Te3 thin films”, Electrochimica Acta Vol. 50, (2005), pp.4371–4377.
    42. D. D. Frari, S Diliberto, N. Stein, C. Boulanger, J. M. Lecuire, ” Comparative study of the electrochemical preparation of Bi2Te3, Sb2Te3, and (BixSb1-x)2Te3 films”, Thin Solid Films Vol. 483, (2005), pp.44-49.
    43. D. D. Frari, S. Diliberto, N. Stein, C. Boulanger, J.M. Lecui, “Electroplating and characterization of (B1-xSbx)Te3 thermoelectric films”, 18th International Conference of Thermoelectrics, (1999).
    44. D. D. Frari, S. Diliberto, N. Stein, C. Boulanger, J.M. Lecui, “Pulsed electrodeposition of (Bi1-xSbx)2Te3 thermoelectric thin films”, Journal of Applied Electrochemistry, Vol. 36, (2006), pp.449-454.
    45. D. D. Frari, S. Diliberto, N. Stein, C. Boulanger, J.M. Lecui, “Pulsed electrodeposition and thermoelectric characterization of (Bi1-xSbx)2Te3”, Coating Fils and Surface Engineering, (2005).
    46. G. Leimkűhler, I. Kerkamm, R. R. Koch, “ Electrodeposition of Antimony Telluride” , Journal of The Electrochemical Society, Vol. 149, (2002), pp. 474-478.
    47. C. Wang, Q. Wang, L. Chen, X. Xu, Q. Yaoa, “Electrodeposition of Sb2Te3 films on Si(100) and Ag substrates”, Electrochemical and Solid Letters, Vol. 9, (2006), pp.147-149.
    48. W. L. Wang, Y. Y. Wang, C. C. Wan, “Composition control of electrodeposited Bi–Te based on mass–transfer manipulation”, Journal of The Electrochemical Society, Vol. 153, (2006), pp.400-404.
    49. S. Wen, R. R. Corderman, F. Seker, A. P. Zhang, L. Denault, M. L. Blohm, “Kinetics and initial stages of bismuth telluride electrodeposition”, Journal of The Electrochemical Society, Vol. 153, (2006), pp.595-602.
    50. P. Heo, K. Hagiwara, R. Ichino, M. Okidob, “Electrodeposition and Thermoelectric Characterization of Bi2Te3”, Journal of The Electrochemical Society, Vol. 153,(2006), pp.213-217.
    51. S. Michel, N. Stein, M. Schneider, C. BOULANGER,J. M. Lecuire, “ Optimization of chemical and electrochemical parameters for the preparation of n-type Bi2Te2.7Se0.3 thin films by electrodeposition”, Journal of Applied Electrochemistry, Vol. 33, (2003), pp.23-27.
    52. D. G. Cahill, “Thermal conductivity measurement from 30 to 750 K: the 3 method”, Review of Scientific Instruments, Vol 61,(1990), pp. 802-808.
    53. D. J. Yao, H. C. Chien, Y. C. Liu, M. H. Tseng, “A rapid method to measure thermal conductivity of dielectric thin films thermal resistance method”, Proceedings of IPACK2005.
    54. T. Kanagawa, R. Hobara, I. Matsuda, T. Tanikawa, A. Natori, S. Hasegawa1, ”Anisotropy in Conductance of a Quasi-One-Dimensional Metallic Surface State Measured by a Square Micro-Four-Point Probe Method”, Physical Review Letters, Vol. 9, No. 3, (2003), pp.036805 1.

    無法下載圖示 本全文未授權公開
    QR CODE