簡易檢索 / 詳目顯示

研究生: 詹凱富
Kai-Fu Chan
論文名稱: 在TCP/IP網路上發展以IP Cameras為基礎之監視系統
The Surveillance System Based on IP Cameras over TCP/IP Networks
指導教授: 黃文吉
Hwang, Wen-Jyi
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 60
中文關鍵詞: 監控系統網路攝影機影像速率控制
英文關鍵詞: Surveillance system, Video streaming, Frame-discarding, IP Camera
論文種類: 學術論文
相關次數: 點閱:157下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文在Application Layer以及Transportation Layer之間加入可動態調整視訊影像Frame Rate之Rate Control法則,我們稱之為優先權訊框丟棄(Priority Early Frame Discard, PEFD)法則來執行TCP協定上視訊串流之彈性QoS。值得注意的是在廣播服務時,固定的QoS可能無法同時滿足複雜的網路環境以及多樣化接收端的需求。不僅如此,當使用者的頻寬不足或是解碼速度過慢時,傳送過多的資料可能會造成傳送延遲,或是由於傳送端TCP BUFFER產生Overflow而讓畫面流失。因此我們讓每一接收端皆獨立使用PEFD法則,並綜合考慮網路頻寬、接收端運算速度以及畫面重要性來主動執行畫面刪除,以提供合適的QoS,並降低傳送延遲以及畫面流失。

    This thesis develops a surveillance system which has flexible quality of service for TCP-based video streaming in accordance with the network bandwidth and computational capabilities of video decoder. To allow the flexible for TCP-based video streaming, the thesis proposes a novel frame-discard algorithm, termed Priority Early Frame Discard algorithm, which actively discarding necessary frame data and effectively controlling the frame rate of the encoded video sequence in the IP Camera for video streaming. Note that broadcast services with a unified quality of service may not be well suited for different network environments and/or receivers. Insufficient network bandwidth and/or decoding speed for given video bit streams may result in transmission delay. The Priority Early Frame Discard algorithm will be employed for each receiver to solve this problem. It actively discards encoded frames for each receiver in accordance with the network bandwidth and the decoding speed of that receiver. The algorithm therefore provides quality of service well-suited for each receiver, and eliminates possible transmission delay.

    Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 4 1.3 Objective 5 1.4 Thesis Organization 6 Chapter 2 Related Works 8 2.1 MPEG 8 2.2 Transport Protocol 11 2.2.1 TCP 12 2.2.2 TCP Congestion Control 14 2.2.3 UDP 15 2.3 Real-Time Video Streaming QoS 16 Chapter 3 Methods 19 3.1 Surveillance System Architecture 19 3.2 Proposed Model 22 3.3 Proposed Algorithms 28 Chapter 4 Experimental Results 40 4.1 Experiment Environment 43 4.2 Good Frame Throughput Rate 46 4.3 Output Bandwidth 48 4.4 Time Latency 50 4.5 Output Bandwidth vs. Time Latency 52 Chapter 5 Conclusions and Future Works 55 References 56 Appendix 58

    [1] A. Eleftheriadis, et al, “Meeting arbitrary QoS constraints using dynamic rate shaping of coded digital video,” in Proc. 5th Int. Workshop Network and Operating System Support for Digital Audio and Video (NOSSDAV’95), pp. 95–106, Apr. 1995.

    [2] Ashvin Goel, et al, “Supporting Low Latency TCP-based Media Streams, ” In Proceedings of the Tenth International Workshop on Quality of Service (IWQoS), May 2002.

    [3] But, J., et al, “Passive TCP Stream Estimation of RTT and Jitter Parameters.” Local Computer Networks, IEEE International Conference, pp: 433-441, 2005.

    [4] Chebrolu, K. et al, “Selective frame discard for interactive video”, Communications, 2004 IEEE International Conference on Vol.7, pp.4097-4102, June 2004.

    [5] D. Wu, et al, “Transporting real-time video over the Internet: Challenges and approaches,” Proc. IEEE, vol. 88, pp.1855-1875, Dec. 2000.

    [6] D. Wu, et al, “Streaming Video over the Internet: Approaches and Directions,” IEEE Trans. Circuits and Systems for Video Technology, pp. 282-300, Mar. 2001.

    [7] E. Gurses, et al, ”Selective Frame Discarding for Video Streaming in TCP/IP Networks,” Packet Video Workshop, Nantes, France, April 2003.

    [8] H. Schulzrinne, et al, “RTP: A Transport Protocol for Real-Time Applications”, RFC1889, Internet Engineering Task Force, January 1996.

    [9] James F. Kurose. & Keith W. Ross., “Computer Networking: A Top-Down Approach Featuring the Internet”, International edition, 3rd, 2005.

    [10] M. Allman, et al, “TCP Congestion Control”, RFC 2581, Internet Engineering Task Force, April 1999.

    [11] Min Zhao, et al, “A Study on the Technology of Video Stream Sender Rate Control for Guaranteed QoS,” PWASET Vol.2, pp: 261-264, 2004

    [12] M. Masugi, et al, “QoS assessment of video streams over IP networks based on monitoring transport and application layer processes at user clients”, IEEE Proc.-Commun., Vol. 152, No. 3, june 2005.

    [13] MPlayer home page: http://www.mplayerhq.hu

    [14] MPEG HOME: http://www.mpeg.org/

    [15] Official MPEG web site: http://www.chiariglione.org/mpeg/

    [16] P. Postel, “User Datagram Protocol”, RFC 768, Internet Engineering Task Force, August 1980.

    [17] P. Postel, “Transmission Control Protocol,” RFC 793, Internet Engineering Task Force, September 1981.

    [18] Phillipa Sessini, et al, “Observations on Round-Trip Times of TCP Connections,” Proc. SPECTS, Calgary, Canada, 2006

    [19] R. Braden, et al, “Integrated services in the Internet architecture: An overview”, RFC 1633, Internet Engineering Task Force, July 1994.

    [20] R. Fielding, et al, “Hypertext transfer protocol - HTTP/1.1,” RFC2068, Internet Engineering Task Force, January 1997.

    [21] R. N. Vaz, et al, “Selective Frame Discard for Video Streaming over IP Networks”, CRC2004, Leiria, Portugal, October 2004

    [22] “thttpd” home page: http://www.acme.com/software/thttpd/

    [23] S. Blake, et al, “An architecture for differentiated services,” RFC 2475, Internet Engineering Task Force, December 1998.

    [24] Z. Liu, et al, “Communication protection in IP-based video surveillance systems,” in Proceedings of 7th IEEE International Symposium on Multimedia (ISM ’05), pp. 69–78, Irvine, Calif, USA, December 2005.

    下載圖示
    QR CODE