簡易檢索 / 詳目顯示

研究生: 涂人福
Tu Jen Fu
論文名稱: 製程參數對低碳當量沃斯回火球墨鑄鐵機械性質的影響
Effects of Processing Variables on the Mechanical Properties of Low Carbon Equivalent Austempered Ductile Irons
指導教授: 施登士
Shih, Teng-Shih
張晉昌
Chang, Jin-Chung
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 135
中文關鍵詞: 製程參數石墨低碳當量沃斯回火球墨鑄鐵
英文關鍵詞: processing variables, graphite, low cabon equivalent, ADI
論文種類: 學術論文
相關次數: 點閱:363下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本實驗設計低碳當量(CE4.0、CE3.7)之球墨鑄鐵經360℃、390℃沃斯回火處理後加以分析比較,其中碳當量4.0之材料分別有加入Ni及未加Ni,利用影像分析系統分析石墨參數,X-ray繞射測定沃斯田鐵的殘留量,再配合SEM觀察沃斯回火球墨鑄鐵的顯微組織。
    實驗結果顯示,添加Ni對於材料之球化率、球墨數以及機械性質無明顯影響。在較低溫360℃沃斯回火,回火時間對其伸長率的影響不如390℃時來得明顯。於高溫390℃沃斯回火,回火時間對伸長率影響較大。在相同的球墨數及熱處理條件下,球墨平均直徑愈小者,伸長率的表現相對較佳。
    抗拉強度隨著球化率增加而略有提昇;球化率較高者伸長率較佳。球墨數增加,伸長率也有增加的趨勢。球墨面積分率的增加,抗拉強度降低,伸長率隨著球墨面積分率的增加而減少。石墨尺寸較大抗拉強度較低,伸長率也較低。
    實驗結果顯示低碳當量沃斯回火球墨鑄鐵之機械性質,可達到ASTM A-897-90 標準之熱處理條件有:(一)550℃預熱15分鐘,900℃沃斯田鐵化90分鐘,再於360℃沃斯回火120分鐘後,空冷至室溫,可達到ASTM A-897-90 1200/850/4等級標準。(二)550℃預熱15分鐘,900℃沃斯田鐵化90分鐘,再於390℃沃斯回火60分鐘後,空冷至室溫,可達到ASTM A-897-90 1050/700/7等級標準。
    關鍵詞:製程參數、低碳當量、石墨、沃斯回火球墨鑄鐵。

    ABSTRACT
    The mechanical properties of two different carbon equivalent (4.0、3.7)ductile cast irons after austempered treatment in 360℃ and 390℃ were investigated. Added Ni in the CE4.0 ductile cast irons were compared with no Ni ones. Used image analysis system to analysis graphite parameter. X-ray diffraction was used to evaluate retain austenite fraction. SEM was applied for micro-graph observation of etched specimens of ADIs.
    Experimental results showed that Ni additions had not remarkable effect on nodularity, nodule count and mechanical properties. Effect of elongation by austempered time in 390℃ was more remarkable than in 360℃. Under same nodule count and treatment, the tested elongations increased by the nodular graphite diameter decreased.
    Ultra tensile strength (UTS) was associated with nodularity increased, but UTS increased little. Increasing nodule count, the tested elongations had a increased trend. Increasing graphite area fraction reduced both UTS and tested elongations. Increasing the diameter of nodular graphite decreased tested elongations.
    The mechanical properties of this study applied for ASTM A-897-90 standard, the heat treatment processes had two methods:(1)specimens were preheated at 550℃ for 15 min and asutenitized at 900℃ for 90 min, after which they were quenched in a salt bath at 360℃ for 120 min. After the austempered treatment, specimens were then air-cooled to room temperature. After this method the mechanical properties can reach ASTM A-897-90 1200/850/4 grade standard.(2)specimens were preheated at 550℃ for 15 min and asutenitized at 900℃ for 90 min, after which they were quenched in a salt bath at 360℃ for 60 min. After the austempered treatment, specimens were then air-cooled to room temperature. After this method the mechanical properties can reach ASTM A-897-90 1050/700/7 grade standard.
    Keyword:processing variables , low carbon equivalent, graphite, ADI.

    總目錄 總目錄.......................................................................................................Ⅰ 表目錄..................................................................................................... Ⅳ 圖目錄..................................................................................................... Ⅴ 第一章 緒論.............................................................................................1 1-1研究背景與動機.................................................................................1 1-2研究目的.............................................................................................2 第二章 文獻回顧.....................................................................................3 2-1 沃斯回火球墨鑄鐵(ADI)之發展與簡介........................................3 2-1-1 沃斯回火球墨鑄鐵(ADI)之發展.................................................3 2-1-2 沃斯回火球墨鑄鐵(ADl)簡介.....................................................3 2-2 ADI之製程......................................................................................5 2-3 球墨鑄鐵的成核與成長...................................................................6 2-3-1球墨鑄鐵的成核...........................................................................6 2-3-2球墨鑄鐵的成長.....................................................................9 2-4球墨變數對球墨鑄鐵之影響...........................................................15 2-4-1球墨數與球化率的影響..............................................................15 2-4-2球墨的型態及其成因.................................................................16 2-4-3球墨的退化(或惡化)型態及其成因...........................................17 2-5 主要元素與合金添加對ADI之影響............................................19 2-5-1碳當量(Carbon equivalent)..........................................................20 2-5-2矽(Silicon)...................................................................................21 2-5-3錳(Manganese).............................................................................22 2-5-4鉬(Molybdenum)..........................................................................23 2-5-5鎳(Nickel)和銅(Copper)..............................................................23 2-5-6鎂(Magnesium)............................................................................24 2-5-7硫(Sulfur).....................................................................................25 2-5-8磷(Phosphorus)............................................................................25 2-5-9合金的添加對沃斯回火熱分析的影響.....................................26 2-5-10合金偏析的改善.......................................................................26 2-6 鑄造參數對球墨鑄鐵的影響........................................................27 2-6-1接種與球化處理的影響..............................................................27 2-6-2保持時間(holding time)與澆注溫度(pouring temperature)的影響 ...............................................................................................................28 2-7 沃斯田鐵化溫度及時間對ADI之影響....................................28 2-8 恆溫變態之探討—ADI二階段相變化.....................................29 2-8-1 第一階段相變態(γο→α+γhc) .........................................29 2-8-2 第二階段相變態(γhc→α+carbide)....................................30 2-9 高、低溫回火相變態......................................................................31 2-9-1高溫回火......................................................................................31 2-9-2低溫回火......................................................................................31 2-10影響ADI基地硬度之因素............................................................31 2-10-1碳(C)之影響.........................................................................31 2-10-2 錳(Mn)之影響............................................................32 2-10-3 鎳(Ni)與銅(Cu)之影響.........................................32 2-10-4 沃斯回火時間、溫度與殘留沃斯田鐵之影響..............32 2-10-5 球墨大小之影響..............................................................33 2-10-6 熱機處理(Thermomechanical Treatment)之影響...........33 2-10-7 冷卻時間(Roling Time:AC3→733K)之影響....................33 2-10-8 碳化物形態之影響..........................................................34 第三章 實驗步驟..........................................................................36 3-1 球墨鑄鐵澆鑄...............................................................................36 3-2 試件製作.......................................................................................37 3-3 熱處理...........................................................................................37 3-4 機械性質測試...............................................................................37 3-4-1 拉伸試驗..................................................................................37 3-4-2 衝擊試驗..................................................................................38 3-5 金相觀察.......................................................................................38 3-5-1 ADI試片之金相觀察..............................................................38 3-5-2 球墨數與顆粒尺寸之分析......................................................39 第四章 結果與討論.............................................................................40 4-1 鑄態組織........................................................................................40 4-2 球墨參數的影響............................................................................41 4-2-1碳當量與球墨數之關係..............................................................41 4-2-2球墨粒度......................................................................................42 4-2-3機械性質的影響.........................................................................43 4-3機械性質的探討.............................................................................46 4-3-1 碳含量的影響............................................................................46 4-3-2 沃斯回火的影響........................................................................47 4-3-3不同球墨數、相同碳當量的影響........................................48 4-3-4相同球墨數及熱處理條件下之變異性....................................49 4-4 理想機械性質之熱處理條件..........................................................51 4-5合金元素的影響......................................................................52 4-6顯微組織觀察..........................................................................52 4-7改良式沃斯回火球墨鑄鐵之金相觀察..................................53 第五章 結論與建議.................................................................................56 5-1 結論..................................................................................................56 5-2 建議..................................................................................................57 參考文獻...............................................................................................58 表目錄 表2-1 The Applications of ADIs........................................................65 表2-2 Standards of ADIs....................................................................66 表3-1 Chemical compositions of material 1-5 used in this study.......67 表3-2(a) Chemical compositions of inoculants.......................................67 表3-2(b) Chemical compositions of spheroidizers..................................67 表4-1 Mechanical properties of as-cast Y-block casting....................68 表4-2 Parameter of Graphite in this study(tensile test species)..........69 表4-3 Parameter of Graphite in this study(impact test species).........72 表4-4 Mechanical properties of material 1-5 used in this study.........75 表4-5 Mechanical properties of material with same nodule count.....78 圖目錄 Fig.2-1 Manufacturing processes of ADIs...........................................80 Fig.2-2 (a) Comparsion of tensile strengths and elongations of different Material.(b) Comparsion of mechanical properties of ADIs and other casting material..............................................................81 Fig.2-3 Various manufacturing processes of ADIs..............................82 Fig.2-4 Hexagonal structure of graphite..............................................83 Fig.2-5 Nucleation and growth mechanism of graphite in molten treated with spheroidizer.....................................................................83 Fig.2-6 (a)formation mechanism of Mg gas bubble in liquid iron.(b) Nucleation and growth mechanism of graphite in gas bubble.84 Fig.2-7 Scheme of relationship between growth rate and undercooling for (0001)plane and (1010) plane of graphite during spheroidal growth, where Rp–(1010) plane, two-dimensional nucleation controlled growth.R`p -(1010) plane, continuous growth.R –plane, screw dislocation controlled growth.R`B-(0001) plane,continuous growth.....................................................................................84 Fig.2-8 Structure of circumferentially growing SG in the FeSiRe-treated cast iron (Sample 1,TE,SEM)(a)Micrograph of the SG;(b)AFG at the center of the SG ; (c)The periphery of SG formed by graphite flakes branching frequently and growing circumferentially; (d)Around head of CVG formed by twin/tilt.(e)Schematic representatio of Fig.3d.............................................................85 Fig.2-9 Morphologies of SG in cast irons(DE.SEM)(a)The SG consisting of pyramids growing spirally around periphery(Sample 4, treated with MgTiRE, quenched after slow cooled),(b)The onion type SG.(Sample 3 ,treated with FeSiREMg,green casting, section thickness : 15 mm),(c) The onion type SG.(Sample 2 ,treated with Cu-Mg , green casting, section thickness : 15 mm)........86 Fig.2-10 Structure of ribbed SG(Sample 5, treated with MgTiRE, green casting, section thickness : 10 mm,TE,SEM)(a)A degenerated ribbed SG ; (b)AFG at the center of the SG.........................86 Fig.2-11 Schematic representation of radial SG..................................87 Fig.2-12 Schematic representation of growth process of duplex SG..87 Fig.2-13 Structure of duplex SG in FeSiRE-treated cast iron.(Sample 1,green casting , section thickness : 15 mm,TE,SEM)(a)duplex SG with circumferentially growing interior spherulite and A spirally growing outer shell ; (b) The circumferentially growing interior spherulite ; (c) The nodular nucleus of the SG and center part of the spherulite formed by graphite flakes growing circumferentially from the nodular nucleus..........................88 Fig.2-14 Relationship between the type of austinite and the shape of the graphite spheroids.................................................................88 Fig.2-15 Isothermal growth mechanism of graphite in austenite shell,(a) In contacted with residual austenite as graphite growth. (b) Graphite that bounded by austenite ring. (c)Bull-eye structure.................................................................................89 Fig.2-16 Micro-segreations of alloying elements................................90 Fig.2-17 (a)Summary of the UTS vs. wt% Mn of austempered casting . The lines refer to average values at the top and the bottom. The individual points represent the extremes(i.e.the best and worst properties at the bottom and top. repectively)(b) Summary of the percent elongation vs. wt% Mn of austempered casting .The lines refer to average values at the top and the bottom. The individual points represent the extremes (i.e.the best and worst properties at the bottom and top. repectively)........................91 Fig.2-18 (a)Effect of molybdenum on mechanical properties of ADIs (b) Effect of nickle on mechanical properties of ADIs................92 Fig.2-19 Effect of phosphorus on mechanical properties of ductile iron...........................................................................................93 Fig.2-20 Effect of Allying elements addition and nodule count on the types and distributions of ferrite............................................93 Fig.2-21 Effect of temperature on inoculated conditions.....................94 Fig.2-22 Relationship between optimum pouring temperature and section thickness................................................................................94 Fig.2-23 (a)Effect of austenitizing temperature and time on concentration of cabon. (b) Effect of austenitizing temperature on TTT diagram……………..……………………………………....95 Fig.2-24 The first stage phase transformation of ADIs…………........96 Fig.2-25 Schematic microstructures of two stage phase transformations of ADIs and steel……………………………………………...97 Fig.2-26 Relationship between austempered time,ferrite and high carbon austenite………………………………………………….....98 Fig.2-27 Schematic microstructures of ADIs with high isothermal holding temperature(350C). (b) Schematic microstructures of ADIs with low isothermal holding temperature (<=350C)….99 Fig.2-28 Relation between C content and mechanical properties…..100 Fig.2-29 Relation between Mn content and retained austenite……..100 Fig.2-30 Influence of Mn content on mechanical properties of ADIs.101 Fig.2-31 Ni vs. Cu response surface of Rockwell hardness for diam.30 mm specimens……………………………………………….101 Fig.2-32 Influence of austempering time and temperature on hardness and retain(stabilized) austenite…………………………………...102 Fig.2-33 Effect of austempering time and spherodial graphite size on Hardness(Austempering temperature : 673 K)………………102 Fig.2-34 Effect of austempering time on retained austenite(Austempering temperature : 673 K)…………………………………………103 Fig.2-35 Relationship between Vickers hardness and reduction ratio..103 Fig.2-36 Relationship between Vickers hardness and austempering time…………………………………………………………..104 Fig.2-37 Relationship between hardness and cooling time from AC3 to 773K…………………………………………………………104 Fig.2-38 Secondry electron image and EDS spectrum of inclusion and graphite at different positions in a rapid cooled specimen.(A)near chilled surface.(B)0.6mm inner from surface.(C) 2.5 mminner from surface...........................................................................104-1 Fig.3-1 ASTM A439 Y-block pattern..............................................105 Fig3-2 Dimensions of (a) tensile test specimen (b)impact test specimen .............................................................................105 Fig 4-1 Ferrite content (80%) of DI-1,S1.........................................106 Fig 4-2 Ferrite content (45%) of DI-1,S3.........................................106 Fig 4-3 Ferrite (35%) and carbide(10%) contents of DI-5,S3..........107 Fig4-4 Relationship between nodule count and nodular graphite diam.....................................................................................107 Fig 4-5 Relationship between UTS and Nodularity.........................108 Fig 4-6 Microstructure of DI-4........................................................109 Fig 4-7 Relationship between Elongation and Nodularity...............110 Fig 4-8 Relationship between UTS and Nodule count.....................111 Fig 4-9 Microstructures of DI-2 after austempered 390℃1 hr......112 Fig 4-10 Microstructures of DI-3 after austempered 390℃1 hr......112 Fig 4-11 Relationship between Elongation and Nodule count...........113 Fig 4-12 Relationship between UTS and Graphite area.....................114 Fig 4-13 Relationship between Elongation and Graphite area...........115 Fig 4-14 Relationship between UTS and Nodular Graphite dia.........116 Fig4-15 Relationship between Elongation and Nodular Graphite dia........................................................................................117 Fig 4-16 Microstructure of DI-3 after austempered 390℃1 hr.......118 Fig4-17 Relationship between unreact Austinte and Graphite Factor...................................................................................119 Fig4-18 Relationship between unreact Austinte and Austempered time,390℃...........................................................................120 Fig4-19 Relationship between unreact Austinte and Austempered time,360℃...........................................................................121 Fig4-20 Relationship between UTS and Austempered time.............122 Fig4-21 Relationship between Impact energy and Austempered Time.....................................................................................123 Fig 4-22 Relationship between Elongation and Austempered time....124 Fig 4-23 Relationship between UTS and Austempered temperature..125 Fig4-24 Relationship between Elongation and Austempered Temperature.........................................................................126 Fig4-25 Relationship between UTS and Elongation in various Nodule count,390℃............................................................127 Fig4-26 Relationship between UTS and Elongation in various Nodule count,360℃............................................................128 Fig4-27 Microstructures of DI-1 after Austempered 390℃1 hr.......129 Fig4-28 Microstructures of DI-2after Austempered 390℃2 hr…....129 Fig4-29 Microstructures of DI-5(S2) after Austempered 390℃2 hr…………………………………………………………..130 Fig4-30 Microstructures of DI-5(S1) after Austempered 390℃2 hr..130 Fig4-31 Optical micrographs of CE3.7 after cooling from 900℃to 760℃ in 12 min, 200X(V/A=1.67)................................131 Fig4-32 Optical micrographs of CE4.0 after cooling from 900℃to 760℃ in 12 min, 200X(V/A=1.67)................................131 Fig4-33 Optical micrographs of CE3.7 after cooling from 900℃to 760℃ in 12 min and keep 3 min, 200X(V/A=1.67)......132 Fig4-34 Optical micrographs of CE4.0 after cooling from 900℃to 760℃ in 12 min and keep 3 min, 100X(V/A=1.67)......132 Fig4-35 Optical micrographs of CE3.7 after cooling from 900℃to 760℃ in 12 min and keep 3 min, 200X(V/A=2.29)......133 Fig4-36 Optical micrographs of CE4.0 after cooling from 900℃to 760℃ in 12 min and keep 3 min,100X(V/A=2.29).......133 Fig4-37 Optical micrographs of CE3.7 after cooling from 900℃to 760℃ in 12 min and keep 3 min, 1000X(V/A=1.67).....134 Fig4-38 Optical micrographs of CE4.0 after cooling from 900℃to 760℃ in 12 min and keep 3 min, 1000X(V/A=1.67).....134 Fig4-39 Relationship between Strength and Elongation,360℃............135 Fig4-40 Relationship between Strength and Elongation,390℃............135

    參考文獻
    1. 潘永寧﹐〝鑄鐵材料之新技術發展〞﹐高品質鑄鐵講習會(1991).
    2. 洪敏雄、周兆民﹐〝沃斯回火球墨鑄鐵之分析與相變態研究〞﹐第 八屆貴重儀器研討會—材料之測驗與分析(1991).
    3. J. A. Lincoln﹐〝Austempered Ductile Iron:the Material of the 80s'?〞,Heat Treating﹐PP﹐30-34(December 1984).
    4. R. D. Forrest﹐〝The Challenge and Opportunity Essented to the SG Iron Industry in the Development of Austempered Ductile Iron〞﹐Foundryman(April 1988).
    5. 施登士﹐〝沃斯回火球墨鑄鐵的介紹〞﹐沃斯回火球墨鑄鐵應用技 術講習會(Sep 1995).
    6. D. R. Askelend﹐〝Effect of Nodule Count and Cooling Rate on the Matrix of Nodular Cast Iron〞﹐AFS Transactions﹐ PP. 313~320(1975).
    7. J. F. Wallace﹐〝The Influence of Foundary Variables on Nodule Count in Ductile Iron〞﹐AFS Transactions﹐ PP. 835~848(1985).
    8. E. N. Pan﹐W. S. Hsu and C. R. Loper﹐〝Effect of Some Variables on the Matrix Properties of Ferritic Ductile Irons〞﹐AFS Transactions﹐ PP. 645~660(1988).
    9. J. F. Janowak and R. B. Gundlach﹐〝A Modern Approach to Alloying Gray Iron〞﹐AFS Transactions﹐ PP. 847~864(1982).
    10. W. C. Johnson and B. V. Kovacs﹐〝The Effect of Additives on the Eutectoid Transformation of Ductile Iron〞﹐Metallurgical Transactions Vol. 9A﹐PP. 219~229(1978).
    11. R. B. Gundlach and Janowak﹐〝A Review of Austempered Duction Iron Metallurgy〞﹐ First International Conference on Austempered Ductile Iron Castings﹐ PP. 1~12(1983).
    12. J. F. Janowak and R. B. Gund﹐〝Development of Ductile Iron for Commercial Austempering〞﹐AFS Transactions﹐ PP. 377~387(1983).
    13. 潘國桐﹐〝沃斯回火球墨規範〞﹐鑄工﹐第69期﹐PP. 26~31(1991).
    14. M. Johansson﹐〝Austenitic-Bainitic Ductile Iron〞﹐AFS Transactions﹐ PP. 117~122(1977).
    15. B. J. Weng﹐S. T. Chang﹐H. N. Liu﹐and S. E. Hsu﹐〝Crack Initiation and Propagation of Austempered Ductile Iron and Its Properities﹐〞Chinses Journal of Materials Science﹐Vol. 23﹐No. 3﹐PP. 278~286(1991).
    16. S. C. Lee and C. C. Lee﹐〝The Effect of Heat Treatment and Alloying Elements on Fracture Toughness of Bainitic Ductile Cast Iron﹐〞AFS Transactions﹐Vol. 96 ﹐PP. 827~838(1988).
    17. 雷添壽﹐〝沃斯回火球墨鑄鐵之研發與應用〞﹐高品質鑄鐵講習會(1991).
    18. B. V. Kovacs﹐〝Austempered Ductile Iron:Fact and Fictions〞﹐Modern casting﹐PP. 38~41(1990).
    19. G. F. Ruff﹐J. F. Wallace﹐〝Control of Graphite Structure and Its Effect on Mechanical Properties of Gray Iron〞﹐AFS Transactions﹐Vol. 84﹐PP.705(1976).
    20. J. F. Wallace﹐〝Effects of Minor Elements on the Structure of Cast Iron〞﹐AFS Transactions﹐Vol. 83﹐PP.363(1975).
    21. S. L. Liu﹐C. R. Loper﹐Jr.﹐S. Shirvani﹐〝Inoculation of Gray Cast Irons With Carbonaceous Material〞﹐AFS Transactions﹐Vol. 93﹐PP.501(1985).
    22. B. Lux﹐〝Nucleation of Graphite in Fe-C-Si Alloys〞﹐Recent Research on Cast Iron﹐ed. H. D. Merchant﹐Gordon and Breach﹐pp. 241(1968).
    23. J. V. Dawson﹐S. Maitra﹐〝Recent Research on the Inoculations of Cast Iron〞﹐British Foundryman﹐pp. 117(1967).
    24. D. M. Stefanescu﹐〝Inoculation of Gray Iron with Sodium and Barium〞﹐Giesserei-Prax.﹐no. 24﹐pp. 429(1972).
    25. M. B. Zeedijk﹐〝Identification of the Nuclei in Graphite Spheroids by Electron Microscopy〞﹐J. Iron Steel Inst.﹐pp. 737(1965).
    26. P. Poyet﹐J. Ponchon﹐〝Contributions to the Study of Graphite Nucleation in Cast Iron for Ingot Molds〞﹐Fonderie﹐no. 277﹐pp.183(1969).
    27. J. C. Mercier et al.﹐〝Inclusions in Graphite Spheroids〞﹐Fonderie﹐no. 277﹐pp.191(1969).
    28. H. Nieswaag﹐A. J. Zuithoff﹐〝The Occurrence of Nodules in Cast Iron Containing Small Amounts of Tellurium〞﹐Paper presented at thee 37th International Foundry Congress﹐CIATF﹐Brighton﹐England(Sep 1970).
    29. R. J. Warrick﹐〝Spheroidal graphite Nuclei in Rare Earth and Magnesium Inoculated Iron〞﹐AFS Transactions﹐Vol. 76﹐PP.722(1968).
    30. M. M. Jacobs﹐T. J. Law﹐D. A. Melford﹐M. J. Stowell﹐〝Basic Processes Controlling the Nucleation of Graphite Nodules in Chill Cast Iron 〞﹐Metals Technology﹐Vol I﹐Part II﹐pp. 490(1974).
    31. D. M. Stefanescu﹐〝Cast Iron Metals Handbook〞﹐9th Edition﹐ASM International﹐PP. 168~181(1989).
    32. H. Itoduji﹐H. Uchikawa﹐〝Formation Mechanism of Chunky Graphite in Heavy-Section Ductile Cast Iron〞﹐AFS Transactions﹐Vol. 42﹐PP.429~448(1990).
    33. Haruki Itofuji and Hajime Yamada﹐〝The role of Magnesium on Graphite Spheroidization〞﹐IMONO﹐The Journal of Japanese Foundry Engineering Society﹐Vol. 67﹐PP.767~774(1995).
    34. J. P. Sadocha﹐J. E. Gruzleski﹐〝The Mechanism of Graphite Spheroid Formation in Pure Fe-C-Si Alloys〞﹐The Metalllurgy of Cast Iron﹐ed. B. Lux et al.﹐Georgi Publishing﹐Switzerland﹐PP.443~459(1975).
    35. Liu Qifu﹐〝Mechanism of Spheroiidal Graphite Formation in Cast Iron〞﹐JFS Transactions﹐Vol. 12﹐PP.18~24(1993).
    36. Z. Jiyang﹐W. Schmitz﹐S. Engler﹐〝Formation of Austenite Shell Around Nodule Graphite and Its Effect on Deterioration of Graphite〞﹐AFS Transactions﹐Vol. 23﹐PP.783~786(1990).
    37. A. P. Druschitz and W. W. chaput﹐〝Effect of Carbon Floation on Nodular Iron Castings〞﹐AFS Transactions﹐Vol. 101﹐PP.447~458(1993).
    38. A. G. Fuller and T. N. Blackman﹐〝Effect of Composition and Foundry Process Variables on Graphite Floation in Hypereutectic Ductil Iron 〞﹐AFS Transactions﹐Vol. 94﹐PP.823~862(1986).
    39. G. X. Sun and C. R. Loper﹐Jr.﹐〝Graphite Floation in Cast Iron 〞﹐AFS Transactions﹐Vol. 91﹐PP.841~854(1983).
    40. M. M. Shea and E. F. Ryntz﹐〝Austerpering Nodular Iron for Optimun Toughness〞﹐AFS Transactions﹐PP.683~688(1986).
    41. R. C. Voigt﹐〝Microstructure Analysis of Austempered Cast Ductile Irons Using the Scanning Electorn Microscope〞﹐AFS Transactions﹐PP.253~262(1983).
    42. R. Boeri and F. Weinberg﹐〝Microsegregation in Ductile Iron〞﹐AFS Transactions﹐PP.179~184(1989).
    43. M. Gagne﹐〝Effect of Mn and Si on the Quality of Heavy Section ADI Castings〞﹐AFS Transactions﹐Vol. 70﹐PP.523~532(1987).
    44. E. Dorazil﹐〝Mechanical Properties of Austempered Ductile Iron〞﹐FOUNDRY M&T﹐PP.36~42(1986).
    45. B. V. Kovacs﹐〝Development of Austempered Ductile Iron (ADI)for Automobile Crankshafts〞﹐Journal of Heat Treating﹐Vol. 5﹐No. 1﹐PP.50~60(1987).
    46. E. Dorazil﹐B. Barta﹐E. Munsterova﹐ L. Stransky and A. Huvar﹐〝High-strength Bainitic Ductile cast Iron〞﹐Crechoslovakia﹐pp. 52~62(1982).
    47. S. K. Yu and C. R. Loper﹐Jr.﹐〝The Effect of Molybdenum﹐Copper and Nickel on the Pearlite and Martensitic Hardenability of Ductile Cast Iron〞﹐AFS Transactions﹐PP.811~822(1988).
    48. T. R. Barch﹐A. J. Stone and H. W. Lownie﹐〝Influence of Copper on Properties of Ductile Iron〞﹐AFS Transactions﹐PP.699~710(1963).
    49. D. Venugopalan and A. Alagarsmy﹐〝Effect of Alloy Additions on the Microstructure and Mechanical Properties of Commercial Ductile Iron〞﹐AFS Transactions﹐PP.395~400(1990).
    50. R. W. Heine﹐〝Magnesium Requirements of Ductile Iron〞﹐AFS Transactions﹐Vol. 95﹐PP.485~488(1989).
    51. 潘國桐﹐廖高宇﹐〝球墨鑄鐵手冊〞﹐中華民國鑄造學會﹐PP.106~112(1984).
    52. 鄭朝旭﹐〝沃斯回火球墨鑄鐵之沃斯肥粒鐵相變態〞﹐國立中央大學機械工程研究所 博士論文(1994).
    53. N. L. Church and R. D. Schelleng﹐〝Detrimental Effect of Calcium on Graphite Structure in Heavy Section Iron〞﹐AFS Transactions﹐Vol. 69﹐PP.5~8(1961).
    54. S. I. Karsay and R. D. Schelleng ﹐〝Heavy Ductile Iron Castings Composition Effect on Graphite Structure〞﹐AFS Transactions﹐Vol. 69﹐PP.672~679(1961).
    55. P. S. Graham﹐〝The Areas of Consideration in the Manufacture of Heavy Section Ductile Iron〞﹐AFS Transactions﹐Vol. 90﹐PP.313~321(1982).
    56. R. W. Reesman and C. R. Loper﹐Jr.﹐〝Heavy Section Ductile Iron as Affected by Certain Processing Variables〞﹐AFS Transactions﹐Vol. 75﹐PP.1~9(1967).
    57. 碩建﹐〝球墨鑄鐵製造實務〞﹐碩建股份有限公司﹐Vol. 1﹐PP.34~59(1992).
    58. T. S. Shih﹐C. H. Chang﹐and Z. D. Ou﹐〝Mechanical Properties and Microstructure of Copper Alloyed Austempered Ductile Irons〞﹐AFS Transactions﹐Vol. 101﹐PP.857~872(1993).
    59. R. Boeri and F. Weinberg﹐〝Microsegregation in Ductile Iron〞﹐AFS Transactions﹐Vol. 97﹐PP.179~184(1989).
    60. T. Shiota﹐M. Hatate﹐S. Komatsu﹐and T. Matsuoka﹐〝Influence of Carbon Content on the Impact Characteristics of Spheroidal Graphite Cast Iron〞﹐IMONO﹐PP.771~776(1993).
    61. H. Kaga and Y. Tanaka﹐〝Influence of Manganese and Graphite Structure on Fatigue Properties of Austempered Spheroidal Graphite Cast Iron〞﹐IMONO﹐PP.382~387(1992).
    62. J. H. Hong﹐Y. H. Hong﹐and S. H. Ko﹐〝Alloy Design on Microstructure and Mechanical Properites of As-Cast Ductile Cast Iron〞﹐IMONO﹐PP.474~479(1992).
    63. C. Voigt and C. R. Loper﹐〝Austempered Ductile Iron-Process Control and Quality Assurance〞﹐J. Heat Treating﹐Vol. 3﹐No.4﹐PP.291~309(1984).
    64. A. Ikenaga﹐Y. Nitta and M. Kawamoto﹐〝Effects of Austempering and Graphite Nodule Count on Corrosion Resistance of Spheroidal Graphite Cast Iron〞﹐IMONO﹐PP.585~591(1995).
    65. S. Yamada and T. Kobayashi﹐〝Effects of Thermomechanical Treatment on Ausferritic Transformation and Toughness of Ductile Cast Iron〞﹐IMONO﹐PP.385~390(1994).
    66. T. Nakata﹐H. Matsumoto﹐T. Kasugai and M. Koyama﹐〝Continuous Cooling Transformation Behavior for Haet Treatment of Spheroidal Graphite Cast Iron〞﹐IMONO﹐PP.543~548(1992).
    67. 謝成興﹐〝沃斯回火球狀石墨鑄鐵300K至873K的拉伸變形特性研究〞﹐國立成功大學 材料科學及工程研究所 博士論文(1995).
    68. Y. Igarashi and S. Okada﹐〝Nucleus of Spheroidal Graphite in Magnesium Treated Cast Iron〞﹐Journal of Japan Foundry engineering Society﹐PP.329~335(1998).
    69. 李孟儒﹐〝矽、硫和錳量對球墨鑄鐵與ADI機械性質之影響〞﹐國立中央大學機械工程研究所 碩士論文(1998).
    70. C.R.Loper ,Jr.,”Processing and Control of Ductile Cast Iron,” Modern Casting(jan 1969);AFS Trans.,pp1-7(1969).
    71. G.R.Strong, “Thermal Analysis as s Ductile Iron Molten Metal Processing Evaluation Tool”, AFS Trans., 1982
    72. 雷添壽,”沃斯回火球墨鑄鐵的石墨品質及殘留沃斯田鐵影響其機械性質的研究”,國科會專題研究計畫成果報告,國立台灣工業技術學院機械系,民國83年1月.
    73. R. Barton, ”Graphite-Nodule Number and Distribution-Their effects on Nodular-Graphite Iron Casting,” Foundry Trade Journal, vol 158, No.3300, pp117-126,Feb 28,1985.
    74. G. R. Ruff, B. K. Doshi,” Relation Between Mechanical Properties and Graphite Structure in Cast Iron, PartⅡ-Ductile Iron,” Modern Casting, pp70-74, Jul 1980.
    75. T. S. Shih, Z. C. Yang,” Effect of Nickel and processing variables on the mechanical properties of austempered ductile iron”, Int. J. Cast Metals Res., 1998,10, pp335-344.
    76. 塚原茂男,山田銑一,”Effect of Ferrite on Ductility of Austempered Ductile Iron”, 鑄造工學,71卷第8號,pp523-528, 1999.
    77. B. F. Brown, M. F. Hawkes,” Kinetics of Graphitization in Cast Iron”, AFS Trans. Vol 59, pp181, 1951.
    78. D. Venugopalan, “ Modeling of Ferrite Formation in Ductile Iron”, AFS Trans. Vol 43, pp271-276, 1989.

    QR CODE