研究生: |
簡柏仲 Chien, Po-Chung |
---|---|
論文名稱: |
(一)經膦誘導或膦催化反應合成二苯並環庚[1,2-b]呋喃酮和酮基官能化亞烷基茚二酮衍生物
(二)以 3-芳碸烷基非那烯酮作為亞烷基前驅物經無鹼之催化型威悌反應 合成非那烯[1,2-b]呋喃酮 I. Synthesis of Dibenzocyclohepta[1,2-b]furanones and Keto Functionalized Alkylidene Indandione Derivatives via Phosphine- mediated or -catalyzed Reaction II. Synthesis of Phenaleno[1,2-b]furanones via Base-free Catalytic Wittig Reaction Using 3-(1-Arylsulfonylalkyl) Phenalenones as Alkylidene Precursors |
指導教授: |
林文偉
Lin, Wenwei |
口試委員: |
林文偉
Lin, Wenwei 姚清發 Yao, Ching-Fa 張永俊 Jang, Yeong-Jiunn |
口試日期: | 2022/06/30 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 169 |
中文關鍵詞: | 分子內威悌反應 、催化型威悌反應 、MBH型反應 、順序一鍋合成法 、二苯並環庚[1,2-b]呋喃酮 、非那烯[1,2-b]呋喃酮 |
英文關鍵詞: | intramolecular Wittig reaction, catalytic Wittig reaction, MBH-type reaction, sequential one-pot reaction |
研究方法: | 實驗設計法 、 觀察研究 、 內容分析法 |
DOI URL: | http://doi.org/10.6345/NTNU202200778 |
論文種類: | 學術論文 |
相關次數: | 點閱:172 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一部分:
本部分以亞烷基二苯並環庚–5,7–二酮作為起始物在三苯基膦的誘導下進行分子內威悌反應(Wittig reaction)生成二苯並環庚[1,2-b]呋喃酮產物。之後亦以此結果為基礎,發展出不需加入鹼試劑的催化型威悌反應策略合成相同產物,且表現出好的產率與反應效率。此外,在機制的探討上則透過數個控制實驗,並佐以 x-ray 單晶繞射以及高解析質譜儀對反應的關鍵中間體進行驗證。
此合成策略可以延伸應用到以醛基取代的聯芳基炔酮為起始物,利用順序一鍋化反應的操作方法控制有機膦試劑誘導 MBH 合環反應(Morita-Baylis–Hillman-type annulation)以及威悌反應來建構二苯並環庚[1,2-b]呋喃酮。此外,還可以使用鄰位醛基取代的苯炔酮衍生物作為起始物,在有機膦試劑的催化下進行 MBH 合環反應及後續醯化轉移反應來得到 β醯化亞烷基茚二酮衍生物。上述兩種產物的合成策略均不需要透過金屬試劑達成,並且可放大到克級規模。
第二部分:
此部分為發展高活性亞烷基化合物適用於催化型分子內威悌反應的前期研究,主要概念係利用芳基亞磺酸作為高活性亞烷基化合物之捕獲親核試劑(trapping nucleophiles)產生芳碸烷基非那烯酮,並使之在適當反應條件下釋出高活性亞烷基化合物進行反應以避免副反應發生。
後續成功開發了以3-芳碸烷基非那烯酮作為亞烷基-1,3-非那烯二酮前驅物經膦誘導分子內威悌反應生成非那烯[1,2-b]呋喃酮的合成方法。而後進一步將反應優化至催化型威悌反應並在無需額外添加鹼試劑的條件下使反應中生成的高活性亞烷基化合物(亞烷基-1,3-非那烯二酮)與醯氯作用來得到目標產物,並表現出好的產率與反應效率。
Part 1:
Alkylidene dibenzocycloheptanediones were successfully utilized for the syn-thesis of dibenzocyclohepta[1,2-b]furanones via the intramolecular Wittig reaction. Additionally, its base-free catalytic Wittig reaction was developed and reported in good yields and high efficiency. Several control experiments have been performed to elucidate the details of the reaction mechanism. The key intermediates were con-firmed by X-ray or high resolution mass spectra (HRMS) analysis.
Furthermore, this approach was also expanded to the formyl-substituted biaryl ynones as substrates, which proceeded via the phosphine-mediated MBH-type reac-tion/Wittig reaction to provide dibenzocyclohepta[1,2-b]furanones. This developed strategy could be also applicable to 2-formylphenyl ynones as substrates for the syn-thesis of keto functionalized alkylidene indandione derivatives via the phos-phine-catalyzed MBH-type reaction/β-acylation sequence. These methodologies were metal-free and could also be demonstrated on gram scale syntheses.
Part 2:
In the second part, the preliminary results of the catalytic Wittig reaction us-ing highly reactive alkylidene precursors was reported. The concept utilized sulfinic acids as the trapping nucleophiles to generate 3-(1-arylsulfonylalkyl) phenalenones and avoid the side reaction of alkylidenes with phenalene-1,3-diones. The resulting 3-(1-arylsulfonylalkyl) phenalenones were successfully employed in the phos-phine-mediated intramolecular Wittig reaction for the synthesis of phenale-no[1,2-b]furanones and subsequently expanded to base-free conditions. The highly reactive alkylidenes (alkylidene-phenalene-1,3-dione) were believed to be in-situ generated during their reactions with phosphine and acyl chlorides, furnishing phenaleno[1,2-b]furanones in good yields and with high efficiency.
1. Carruthers, W.; Coldham, I. Modern Methods of Organic Synthesis, 4th ed.; Cambridge University Press: Cambridge, 2004.
2. Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611-3613.
3. Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392-6394.
4. Julia, M.; Paris, J.-M. Tetrahedron Lett. 1973, 14, 4833-4836.
5. Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769-3772.
6. Wittig, G.; Schöllkopf, U. Chem. Ber. 1954, 97, 1318-1330.
7. (a) Horner, L.; Hoffmann, H. M. R.; Wippel, H. G. Ber. 1958, 91, 61-63. (b) Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733-1738. (c) Wadsworth, W. S. Org. React. 1977, 25, 73-253.
8. Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380-2382.
9. Appel, R. Angew. Chem. Int. Ed. 1975, 14, 801-811.
10. Gong, J. H.; Im, Y. J.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2002, 43, 1247-1251.
11. Rauhut, M. M.; Currier, H. U.S. Patent 3074999 1963.
12. (a) Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815. (b) Baylis, A. B.; Hillman, M. E. D. German Patent. 2155113, 1972.
13. Beddoe, R. H.; Andrews, K. G.; Magne, V.; Cuthbertson, J. D.; Saska, J.; Shannon-Little, A. L.; Shanahan, S. E.; Sneddon, H. F.; Denton, R. M. Science 2019, 365, 910-914.
14. Denton, R. M.; An, J.; Adeniran, B. Chem. Commun. 2010, 46, 3025-3027.
15. O’Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A. L.; Kunkel, S. R.; Chass, G. A. Angew. Chem. Int. Ed. 2009, 48, 6836-6839.
16. Schirmer, M.-L.; Adomeit, S.; Werner, T. Org. Lett. 2015, 17, 3078-3081.
17. Grandane, A.; Longwitz, L.; Roolf, C.; Spannenberg, A.; Murua Escobar, H.; Werner, T. J. Org. Chem. 2019, 84, 1320-1329.
18. Lee, C.-J.; Sheu, C.-N.; Tsai, C.-C.; Wu, Z.-Z.; Lin, W. Chem. Commun. 2014, 50, 5304-5306.
19. Jeng, W.-C.; Chien, P.-C.; Vagh, S. S.; Edukondalu, A.; Lin, W. Synthesis 2021, 53, 4408-4418.
20. Vagh, S. S.; Hou, B.-J.; Edukondalu, A.; Wang, P.-C.; Lin, W. Org. Lett. 2021, 23, 842-846.
21. Vagh, S. S.; Hou, B.-J.; Edukondalu, A.; Wang, P.-C.; Chen, Y.-R.; Lin, W. Adv. Synth. Catal. 2021, 363, 5429–5435.
22. Lee, C.-J.; Chang, T.-H.; Yu, J.-K.; Reddy, G. M.; Hsiao, M.-Y.; Lin, W. Org. Lett. 2016, 18, 3758-3761.
23. Liou, Y.-C.; Wang, H.-W.; Edukondalu, A.; Lin, W. Org. Lett. 2021, 23, 3064-3069.
24. Dastan, A.; Kilic, H.; Saracoglu, N. Beilstein J. Org. Chem. 2018, 14, 1120-1180.
25. Guo, H., Roman, D.; Beemelmanns, C. Nat. Prod. Rep. 2019, 36, 1137-1155.
26. Butt, H. M.; Wei, S.; Wang, Y.; Qu, J.; Wang, B. Tetrahedron Lett. 2021, 87, 153510.
27. Griffin, G. W.; Horn, K. A. Org. Prep. Proced. Int. 1985, 17, 187-190.
28. Corrie, T. J.; Ball, L. T.; Russell, C. A.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 2017, 139, 245-254.
29. Mondal, A.; Satpathi, B.; Ramasastry, S. S. V. Org. Lett. 2022, 24, 256–261
30. Shivangi, A. M.; Tung, P.; Wagulde, S. V.; Ramasastry, S. S. V. Chem. Commun. 2021, 57, 9260-9263.
31. Sobhani, M.; Frey, A.; Rettmann, A.; Thom, R.; Villinger, A.; Ehlers, P.; Langer, P. J. Org. Chem. 2021, 86, 14420-14432.
32. Ouyang, Y.; Wu, K.; Zhou, W.; Cai, Q. Org. Chem. Front. 2021, 8, 2456-2460.
33. Khairnar, P. V.; Su, Y.-H.; Chen, Y.-C.; Edukondalu, A.; Chen, Y.-R.; Lin, W. Org. Lett. 2020, 22, 6868-6872.
34. Szémes, F.; Hrnčiar, P. Collect. Czechoslov. Chem. Commun. 1974, 39, 3720-2727.
35. Penhoat, M.; Levacher, V.; Dupas, G. J. Org. Chem. 2003, 68, 9517-9520.
36. Zhu, J.-L.; Tsai, Y.-T. J. Org. Chem. 2021, 86, 813-828.
37. Haav, K.; Saame, J.; Kütt, A.; Leito, I. Eur. J. Org. Chem. 2012, 11, 2167-2172.
38. Hosoya, H.; Nagakura, S. Bull. Chem. Soc. Jpn. 1966, 39, 1414-1418.
39. Mondal, A.; Hazra, R.; Grover, J.; Raghu, M.; Ramasastry, S. S. V. ACS Catal. 2018, 8, 2748-2753.
40. Edukondalu, A.; Vagh, S. S.; Lin, T.-H.; Lin, W. Chem. Commun. 2021, 57, 2045-2048.
41. Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. R. Introduction to Spec-troscopy, 5th ed.; Cengage Learning: Boston, 2015.
42. Zhang, Y.; Ye, S.; Ji, M.; Li, L.; Guo, D.; Zhu, G. J. Org. Chem. 2017, 82, 6811-6818.
43. Ahmed, J.; Mandal, S. K. Chem. Rev. 2022, XXXX, XXX, XXX-XXX.
44. Itkis, M. E. Science 2002, 296, 1443-1445.
45. Sen, T. K.; Mukherjee, A.; Modak, A.; Mandal, S. K.; Koley, D. Dalton Trans. 2013, 42, 1893-1904.
46. Paira, R.; Singh, B.; Hota, P. K.; Ahmed, J.; Sau, S. C.; Johnpeter, J. P.; Mandal, S. K. J. Org. Chem. 2016, 81, 2432-2441.
47. Mandal, S. K.; Bhunia, M.; Sahoo, S.; Shaw, B. K.; Pariyar, D. A.; Vaidya, S.; Adhikari, D. Chem. Sci. 2019, 10, 7433-7441.
48. Vyskočil, Š.; Meca, L.; Tišlerová, I.; Císařová, I.; Polášek, M.; Kočovský, P. Chem. Eur. J. 2002, 8, 4633-4648.
49. Beletskaya, I.; Sigeev, A.; Peregudov, A.; Petrovskii, P. Synthesis 2007, 16, 2534-2538.
50. Wössner, J.; Esser, B. J. Org. Chem. 2020, 85, 5048-5057.
51. Lee, C.-J.; Jang, Y.-J.; Wu, Z.-Z.; Lin, W. Org. Lett. 2012, 14, 1906-1909.
52. Ballini, R.; Palmieri, A.; Petrini, M.; Torregiani, E. Org. Lett. 2006, 8, 4093-4096.
53. Palmieri, A.; Petrini, M. J. Org. Chem. 2007, 72, 1863-1866.
54. Wei, H.; Liu, Y.; Gopalakrishna, T. Y.; Phan, H.; Huang, X.; Bao, L.; Zeng, Z. J. Am. Chem. Soc. 2017, 139, 15760-15767.
55. Zahradník, R.; Tichý, M.; Reid, D. H. Tetrahedron, 1968, 24, 3001-3009.
56. Yang, S.-M.; Wang, C.-Y.; Lin, C.-K.; Karanam, P.; Reddy, G. M.; Tsai, Y.-L.; Lin, W. Angew. Chem. Int. Ed. 2018, 57, 1668-1672.
57. Wu, Z.-Z.; Jang, Y.-J.; Lee, C.-J.; Lee, Y.-T.; Lin, W. Org. Biomol. Chem. 2013, 11, 828-834.