研究生: |
楊士緯 Shih-Wei Yang |
---|---|
論文名稱: |
高頻振動輔助微線切割放電加工技術開發與高密度超高細長比精微陣列探針製作研究 Development of a high-frequency vibration assisted micro w-EDM technique and research of high-spatial-density, ultra-high-aspect-ratio micro probe array fabrication |
指導教授: |
陳順同
Chen, Shun-Tong |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 精微線切割放電加工 、高密度及超高細長比精微陣列式探針 、高頻振動 |
英文關鍵詞: | micro w-EDM, High-spatial-density and ultra-high-aspect-ratio micro probe array, high-frequency vibration |
論文種類: | 學術論文 |
相關次數: | 點閱:470 下載:20 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
精微線切割放電加工(Micro w-EDM)適用於高深寬比(High-aspect-ratio)微細元件的切割加工,尤以具高密度且高細長比的精微陣列式探針(High-spatial-density, high-aspect-ratio micro probe array)最為適合;但線切割放電加工過程中,放電殘渣(Discharge debris)易殘留於工件與細線電極間,導致二次放電(Secondary discharge)甚至短路(Short)發生,影響加工效率。鑒此,本研究發展一套具「精微線切割放電加工機能」的桌上型CNC工具機(Tabletop micro CNC w-EDM machine),並提出以高頻振動(High-frequency vibration)輔助精微線切割放電加工的方法,即建構壓電陶瓷材料(Piezoelectric ceramic material)於銅線川流的路徑上,用以對微細銅線進行高頻振動輔助,目的在幫助放電殘渣(Discharge debris)排除,以減少二次放電與短路機會。研究證實,本實驗所提原創技術,能加工出10×10陣列,尺寸23×23×2,500μm的高密度且具超高細長比的精微陣列式探針,其細長比超過100:1,非常適用於具高深寬比的微細結構,如3D-IC電路之檢測。而以高頻振動輔助進行切割加工,其所耗時間約是未開啟振動輔助加工所耗時間的75-80%,直線精度亦不因振動輔助而受影響,證實高頻振動輔助能有效提高線切割放電加工的效能,成功實現高速度高精度的精微線切割放電加工法,此項研究成果,深具商用價值。
Micro w-EDM (wire Electrical Discharge Machining) is highly suitable for machining of high-aspect-ratio micro components. However, there is a difficulty in the removal of debris during the machining resulting in secondary discharge even short happening easily in the micro gap. A micro w-EDM technique specifically for machining high-spatial-density and ultra-high-aspect-ratio micro structures is developed in this thesis. A tabletop CNC machine equipped with a complete micro w-EDM system for wire tension (20µm in diameter) control is designed and employed for the study of ultra-high-aspect-ratio micro probe array fabrication. A high-frequency vibration assisted technique that the micro wire is vibrated radially with micro scale via a piezoelectric ceramic material is proposed to assist in the removal of debris and reduce the frequencies of secondary discharge and short. Experimental results demonstrate that the proposed approach can fabricate high-spatial-density and ultra-high-aspect-ratio micro structure with 10x10 squared probes. The finished probe array that have the dimensions of 23×23×2,500μm and the aspect ratio of over 100 is qualified to detect the micro structural circuit, 3D-IC especially. In addition, the time is about four-fifth of the machining time for without high-frequency vibration assisted. The machining efficiency is greatly improved and achieve a high -speed and -accuracy micro w-EDM approach. These experimental results will be of substantial benefit to precision machining.
[1]G. Moore, Cramming more components onto integrated circuits, Electronics, Vol.38, No.8, 1965
[2]F. Wang, X. Li, R. Cheng, K. Jiang, and S. Feng, Silicon cantilever arrays with by-pass metal through-silicon-via (TSV) tips for micromachined IC testing probe cards, Microelectronic engineering Vol.86, pp.2211-2216, 2009
[3]C. Y. Lo, Y. T. Hsing, L. M. Denq, and C. W. Wu, SOC Test architecture and method for 3D-ICs, IEEE Transactions on computer-aided design of integrated circuits and systems, Vol.29, No.10, pp.1645-1649, 2010
[4]B. Noia, S. K. Goel, K. Chakrabarty, E. J. Marinissen, and J. Verbree, Test-architecture optimization for TSV-Based 3D stacked ICs, Test symposium (ETS), 2010, 15th IEEE European, Praha, pp.24-29, 2010
[5]B. Noia, K. Chakrabarty, S. K. Goel, E. J. Marinissen, and J. Verbree, Test-architecture optimization and test scheduling for TSV-Based 3D stacked ICs, IEEE Transactions on computer-aided design of integrated circuits and systems, Vol. 30, No.11, pp.1705-1718, 2011
[6]An alternative approach to circuit design and assembly for high-speed interconnections, http://www.soccentral.com/results.asp?EntryID=10778
[7]P. Garrou, MCNC Research & development institute, Research triangle park, N.C., 2005
[8]晶片封裝產業的文藝復興時代即將來臨, 半導體產業推動辦公室專刊, 經濟部工業局, No.30, pp.17
[9]日本AMOLED再起的機會 充分借力臺灣的產業能量, http://www.itri.org.tw/chi/iek/p11.asp?RootNodeId=070&NavRootNodeId=0753&NodeId=07534&ArticleNBR=3855
[10]莊正賢, 針錐狀與圓柱狀微電極電解加工之研發, 國立雲林科技大學機械工程學系, 碩士論文, 2003
[11]S. Ishikawa, Y. Uehara, Y. Watanabe, K. Katahira, W. Lin, H. Ohmori, N. Mitsuishi, and Y. Yamamoto, Development of micro tool by ELID micro fabrication system 3rd report, High efficiency machining of micro-tools, Journal of the Japan Society for Abrasive Technology, Vol.49, No.3, pp.157-162, 2005
[12]Y. T. Chen, Y. S. Liao and T. T. Chen, Fabrication of arrayed micro needles by laser LIGA process, Proceedings of the 3rd Int. Conf. on Leading Edge Manufacturing in 21st Century, Nagoya, Japan, pp. 285-290, 2005
[13]Fine pitch array probe structure with reverse wiring discharge machining process, TSMC, vol.02, 2011
[14]T. Masuzawa, Micro-EDM , Proceedings of the 13th international symposium for electromachining, pp.3-19, 2001
[15]T. Masuzawa, State of the art of micromachining, Ann CIRP, vol.49, pp.473-488, 2000
[16]M. Muro, Y. Ikemoto, T. Gawa, T. Masaki, and Y. Furusawa, Micro-hole machining by vibration-assisted EDM, Proceedings of the annual meeting of Japanese society of electrical machining engineers, pp.19-20, 1994
[17]T. Endo, T. Tsujimoto, and K. Mitsui, Study of vibration-assisted micro-EDM—The effect of vibration on machining time and stability of discharge, Precision Engineering, vol.32, pp.269-277, 2008
[18]Y. C. Lin, and H. S. Lee, Machining characteristics of magnetic force-assisted EDM, International journal of machine tools & manufacture, vol.48, pp.1179-1186, 2008
[19]G. S. Prihandana, M. Mahardika, M. Hamdi, Y. S. Wong, and K. Mitsui, Effect of micro-powder suspension and ultrasonic vibration of dielectric fluid in micro–EDM processes—Taguchi approach, International journal of machine tools & manufacture, pp.1035-1041, 2009
[20]Z. Y. Yu, Y. Zhang, J. Li, J. Luan, F. Zhao, and D. Guo, High aspect ratio micro-hole drilling aided with ultrasonic vibration and planetary movement of electrode by micro-EDM, CIRP Annals - Manufacturing technology, vol.58, pp.213-216, 2009
[21]M. G. Xu, J. H. Zhang, Y. Li, Q. H. Zhang, and S. F. Ren , Material removal mechanisms of cemented carbides machined by ultrasonic vibration assisted EDM in gas medium, Journal of materials processing technology, vol.209, pp.1742-1746, 2009
[22]Y. Jiang, W. Zhao, X. Xi, X. Kang, and L. Gu, Vibration assisted EDM of small-hole using voice cEDM oil motor, Procedia CIRP, vol.1, pp.645-650, 2012
[23]T. Fofonoff, S. Martel, C. Wiseman, R. Dye, I. Hunter, N. Hatsopoulos, and J. Donoghue, A highly flexible manufacturing technique for microelectrode array fabrication, Proceedings of the second joint EMBS/BMES conference, pp.23-26, 2002
[24]T. Fofonoff, S. Martells, and I. Hunter, Assembly-ready brain microelectrode arrays, Proceedings of the 25th annual international conference of the IEEE EMBS, pp.17-21, 2003
[25]W. C. Ng, H. L. Seet, K. S. Lee, N. Ning, W. X. Tai, M. Sutedja, J. Y. H. Fuh, and X. P. Li, Micro-spike EEG electrode and the vacuum-casting technology for mass production, Journal of materials processing technology, vol.209, pp.4434-4438, 2009
[26]D. Rakwal, S. Heamawatanachai, P. Tathireddy, F. Solzbacher, and E. Bamberg, Fabrication of compliant high aspect ratio silicon microelectrode arrays using micro-wire electrical discharge machining, Microsyst technol, vol.15, pp.789-797, 2009
[27]W. Zeng, Z. Wang, M. Weng, and Y. Liu, Micro-electrode array and micro-hole array fabrication by combined micro-WEDM and EMMD, Digest journal of nanomaterials and biostructures, Vol.7, No.2, pp.755-761, 2012
[28]T. Masuzawa, Fundamentals of micro-EDM technology are summarized and the state of the art of the technology is overviewed, Proceedings of the 13th international symposium for electro-machining ISEM XIII, vol1.1, pp.3-15, 2001
[29]Charmilles technologies ROBOFIL 300, pp.1.1.4-1.1.5, 1993
[30]C. Sommer, Non-traditional machining handbook, Advance Publishing, Inc., pp.117-124, 2000
[31]董光雄, 放電加工, 復文書局出版社, pp.74-75, 1988
[32]機械技術雜誌編輯部, 二十一世紀的顯學微機電系統(四)-微放電精密加工, 機械技術雜誌, pp.220-222, 2000
[33]蕭瑞陽, 放電加工原理與應用-線切割放電加工, http://eshare.stut.edu.tw/EshareFile/2010_4/2010_4_e1e12437.ppt/
[34]慶鴻機電工業股份有限公司, 線切割機加工資料手冊, H版, 2-1~2-3, 2007
[35]Piezo Nano Positioning, The world of micro- and nano positioning, 2005
[36]Low voltage co-fired multilayer stacks, rings and chips for actuation, http://www.piezomechanik.com/en/introduction/
[37]First Steps towards Piezoaction, Piezomechanik GmbH, http://www.piezomechanik.com/en/introduction/
[38]慶鴻機電工業股份有限公司, CNC線切割放電加工機, 線切割機保養手冊, B1 edition, 2008
[39]壓電陶瓷材料, Piezomechanik GmbH, http://www.piezomechanik.com/
[40]函數波信號產生器, 茂迪股份有限公司, http://www.motechsolar.com/
[41]功率放大器, Piezo Master, http://piezomaster.com/
[42]黃瑋平, 低成本高剛性微型工具機開發與高精度陣列光學微模具製作研究, 國立臺灣師範大學機電科技學系碩士論文, pp. 47, 2011
[43]微型直流馬達, FAULHABER, http://www.faulhaber.com/
[44]黃銅電極(250µm), 碧山金屬有限公司
[45]黃銅電極(50µm), TECHNOS株式會社, http://www.bedra.com/products/edm_wire/microerosion_wires/microcut/microcut/index_eng.html
[46]黃銅電極(20µm),microcut®, http://www.bedra.com/products/edm_wire/microerosion_wires/microcut/microcut/index_eng.html
[47]H. J. Scussel, Friction and wear of cemented carbides, ASM handbook, Vol.18, ASM Int., pp.795, 1992
[48]工具顯微鏡, 漢磊股份有限公司, http://www.aixon.com.tw/
[49]掃描式電子顯微鏡,JEOL, http://www.jeol.com/Default.aspx?tabid=36
[50]3D測量雷射共焦顯微鏡, OLYMPUS, http://www.olympus-ims.com/en/metrology/ols4000/
[51]混合訊號示波器, 太克科技, http://www1.tek.com/zh-tw/
[52]Y. S. Liao, S. T. Chen, and C. S. Lin, Development of a high precision tabletop versatile CNC Wire-EDM for making intricate micro parts, Journal of micromechanics and microengineering, Vol.15, No.2, pp.245-253, 2005
[53]S. T. Chen, H. Y. Yang, and C. W. Du, Study of an ultrafine w-EDM technique, Journal of micromechanics and microengineering, vol. 19, 8pp., 2009
[54]齊藤長男, 放電加工のしくみと100%活用法, 三菱電機(株), pp.40-67, 1979
[55]E. J. Weller, Nontraditional Machining Processes, Society of manufacturing engineers, pp.162-170, 1984
[56]Tungsten Carbide Properties , http://matweb.com/
[57]Y. Tao, R. J. Fasching, and F. B. Prinza, Ultra-sharp high-aspect-ratio probe array for SECM and AFM Analysis, http://npl-web.stanford.edu/
[58]S. Takeuchi, T. Suzuki, K. Mabuchi, and H. Fujita, 3D flexible multichannel neural probe array, Journal of micromechanics and microengineering, vol. 14, pp.104-107, 2004
[59]R. Goering, EDA workshop: A reality check on 3D-ICs, http://www.cadence.com/Community/blogs/ii/archive/2010/04/19/eda-workshop-a-reality-check-on-3d-ics.aspx